00001 /* dormr2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dormr2_(char *side, char *trans, integer *m, integer *n, 00017 integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal * 00018 c__, integer *ldc, doublereal *work, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; 00022 00023 /* Local variables */ 00024 integer i__, i1, i2, i3, mi, ni, nq; 00025 doublereal aii; 00026 logical left; 00027 extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 00028 doublereal *, integer *, doublereal *, doublereal *, integer *, 00029 doublereal *); 00030 extern logical lsame_(char *, char *); 00031 extern /* Subroutine */ int xerbla_(char *, integer *); 00032 logical notran; 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* DORMR2 overwrites the general real m by n matrix C with */ 00048 00049 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00050 00051 /* Q'* C if SIDE = 'L' and TRANS = 'T', or */ 00052 00053 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00054 00055 /* C * Q' if SIDE = 'R' and TRANS = 'T', */ 00056 00057 /* where Q is a real orthogonal matrix defined as the product of k */ 00058 /* elementary reflectors */ 00059 00060 /* Q = H(1) H(2) . . . H(k) */ 00061 00062 /* as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n */ 00063 /* if SIDE = 'R'. */ 00064 00065 /* Arguments */ 00066 /* ========= */ 00067 00068 /* SIDE (input) CHARACTER*1 */ 00069 /* = 'L': apply Q or Q' from the Left */ 00070 /* = 'R': apply Q or Q' from the Right */ 00071 00072 /* TRANS (input) CHARACTER*1 */ 00073 /* = 'N': apply Q (No transpose) */ 00074 /* = 'T': apply Q' (Transpose) */ 00075 00076 /* M (input) INTEGER */ 00077 /* The number of rows of the matrix C. M >= 0. */ 00078 00079 /* N (input) INTEGER */ 00080 /* The number of columns of the matrix C. N >= 0. */ 00081 00082 /* K (input) INTEGER */ 00083 /* The number of elementary reflectors whose product defines */ 00084 /* the matrix Q. */ 00085 /* If SIDE = 'L', M >= K >= 0; */ 00086 /* if SIDE = 'R', N >= K >= 0. */ 00087 00088 /* A (input) DOUBLE PRECISION array, dimension */ 00089 /* (LDA,M) if SIDE = 'L', */ 00090 /* (LDA,N) if SIDE = 'R' */ 00091 /* The i-th row must contain the vector which defines the */ 00092 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00093 /* DGERQF in the last k rows of its array argument A. */ 00094 /* A is modified by the routine but restored on exit. */ 00095 00096 /* LDA (input) INTEGER */ 00097 /* The leading dimension of the array A. LDA >= max(1,K). */ 00098 00099 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00100 /* TAU(i) must contain the scalar factor of the elementary */ 00101 /* reflector H(i), as returned by DGERQF. */ 00102 00103 /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ 00104 /* On entry, the m by n matrix C. */ 00105 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00106 00107 /* LDC (input) INTEGER */ 00108 /* The leading dimension of the array C. LDC >= max(1,M). */ 00109 00110 /* WORK (workspace) DOUBLE PRECISION array, dimension */ 00111 /* (N) if SIDE = 'L', */ 00112 /* (M) if SIDE = 'R' */ 00113 00114 /* INFO (output) INTEGER */ 00115 /* = 0: successful exit */ 00116 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00117 00118 /* ===================================================================== */ 00119 00120 /* .. Parameters .. */ 00121 /* .. */ 00122 /* .. Local Scalars .. */ 00123 /* .. */ 00124 /* .. External Functions .. */ 00125 /* .. */ 00126 /* .. External Subroutines .. */ 00127 /* .. */ 00128 /* .. Intrinsic Functions .. */ 00129 /* .. */ 00130 /* .. Executable Statements .. */ 00131 00132 /* Test the input arguments */ 00133 00134 /* Parameter adjustments */ 00135 a_dim1 = *lda; 00136 a_offset = 1 + a_dim1; 00137 a -= a_offset; 00138 --tau; 00139 c_dim1 = *ldc; 00140 c_offset = 1 + c_dim1; 00141 c__ -= c_offset; 00142 --work; 00143 00144 /* Function Body */ 00145 *info = 0; 00146 left = lsame_(side, "L"); 00147 notran = lsame_(trans, "N"); 00148 00149 /* NQ is the order of Q */ 00150 00151 if (left) { 00152 nq = *m; 00153 } else { 00154 nq = *n; 00155 } 00156 if (! left && ! lsame_(side, "R")) { 00157 *info = -1; 00158 } else if (! notran && ! lsame_(trans, "T")) { 00159 *info = -2; 00160 } else if (*m < 0) { 00161 *info = -3; 00162 } else if (*n < 0) { 00163 *info = -4; 00164 } else if (*k < 0 || *k > nq) { 00165 *info = -5; 00166 } else if (*lda < max(1,*k)) { 00167 *info = -7; 00168 } else if (*ldc < max(1,*m)) { 00169 *info = -10; 00170 } 00171 if (*info != 0) { 00172 i__1 = -(*info); 00173 xerbla_("DORMR2", &i__1); 00174 return 0; 00175 } 00176 00177 /* Quick return if possible */ 00178 00179 if (*m == 0 || *n == 0 || *k == 0) { 00180 return 0; 00181 } 00182 00183 if (left && ! notran || ! left && notran) { 00184 i1 = 1; 00185 i2 = *k; 00186 i3 = 1; 00187 } else { 00188 i1 = *k; 00189 i2 = 1; 00190 i3 = -1; 00191 } 00192 00193 if (left) { 00194 ni = *n; 00195 } else { 00196 mi = *m; 00197 } 00198 00199 i__1 = i2; 00200 i__2 = i3; 00201 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00202 if (left) { 00203 00204 /* H(i) is applied to C(1:m-k+i,1:n) */ 00205 00206 mi = *m - *k + i__; 00207 } else { 00208 00209 /* H(i) is applied to C(1:m,1:n-k+i) */ 00210 00211 ni = *n - *k + i__; 00212 } 00213 00214 /* Apply H(i) */ 00215 00216 aii = a[i__ + (nq - *k + i__) * a_dim1]; 00217 a[i__ + (nq - *k + i__) * a_dim1] = 1.; 00218 dlarf_(side, &mi, &ni, &a[i__ + a_dim1], lda, &tau[i__], &c__[ 00219 c_offset], ldc, &work[1]); 00220 a[i__ + (nq - *k + i__) * a_dim1] = aii; 00221 /* L10: */ 00222 } 00223 return 0; 00224 00225 /* End of DORMR2 */ 00226 00227 } /* dormr2_ */