00001 /* dorgr2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dorgr2_(integer *m, integer *n, integer *k, doublereal * 00017 a, integer *lda, doublereal *tau, doublereal *work, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2, i__3; 00021 doublereal d__1; 00022 00023 /* Local variables */ 00024 integer i__, j, l, ii; 00025 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00026 integer *), dlarf_(char *, integer *, integer *, doublereal *, 00027 integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *); 00028 00029 00030 /* -- LAPACK routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* DORGR2 generates an m by n real matrix Q with orthonormal rows, */ 00043 /* which is defined as the last m rows of a product of k elementary */ 00044 /* reflectors of order n */ 00045 00046 /* Q = H(1) H(2) . . . H(k) */ 00047 00048 /* as returned by DGERQF. */ 00049 00050 /* Arguments */ 00051 /* ========= */ 00052 00053 /* M (input) INTEGER */ 00054 /* The number of rows of the matrix Q. M >= 0. */ 00055 00056 /* N (input) INTEGER */ 00057 /* The number of columns of the matrix Q. N >= M. */ 00058 00059 /* K (input) INTEGER */ 00060 /* The number of elementary reflectors whose product defines the */ 00061 /* matrix Q. M >= K >= 0. */ 00062 00063 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00064 /* On entry, the (m-k+i)-th row must contain the vector which */ 00065 /* defines the elementary reflector H(i), for i = 1,2,...,k, as */ 00066 /* returned by DGERQF in the last k rows of its array argument */ 00067 /* A. */ 00068 /* On exit, the m by n matrix Q. */ 00069 00070 /* LDA (input) INTEGER */ 00071 /* The first dimension of the array A. LDA >= max(1,M). */ 00072 00073 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00074 /* TAU(i) must contain the scalar factor of the elementary */ 00075 /* reflector H(i), as returned by DGERQF. */ 00076 00077 /* WORK (workspace) DOUBLE PRECISION array, dimension (M) */ 00078 00079 /* INFO (output) INTEGER */ 00080 /* = 0: successful exit */ 00081 /* < 0: if INFO = -i, the i-th argument has an illegal value */ 00082 00083 /* ===================================================================== */ 00084 00085 /* .. Parameters .. */ 00086 /* .. */ 00087 /* .. Local Scalars .. */ 00088 /* .. */ 00089 /* .. External Subroutines .. */ 00090 /* .. */ 00091 /* .. Intrinsic Functions .. */ 00092 /* .. */ 00093 /* .. Executable Statements .. */ 00094 00095 /* Test the input arguments */ 00096 00097 /* Parameter adjustments */ 00098 a_dim1 = *lda; 00099 a_offset = 1 + a_dim1; 00100 a -= a_offset; 00101 --tau; 00102 --work; 00103 00104 /* Function Body */ 00105 *info = 0; 00106 if (*m < 0) { 00107 *info = -1; 00108 } else if (*n < *m) { 00109 *info = -2; 00110 } else if (*k < 0 || *k > *m) { 00111 *info = -3; 00112 } else if (*lda < max(1,*m)) { 00113 *info = -5; 00114 } 00115 if (*info != 0) { 00116 i__1 = -(*info); 00117 xerbla_("DORGR2", &i__1); 00118 return 0; 00119 } 00120 00121 /* Quick return if possible */ 00122 00123 if (*m <= 0) { 00124 return 0; 00125 } 00126 00127 if (*k < *m) { 00128 00129 /* Initialise rows 1:m-k to rows of the unit matrix */ 00130 00131 i__1 = *n; 00132 for (j = 1; j <= i__1; ++j) { 00133 i__2 = *m - *k; 00134 for (l = 1; l <= i__2; ++l) { 00135 a[l + j * a_dim1] = 0.; 00136 /* L10: */ 00137 } 00138 if (j > *n - *m && j <= *n - *k) { 00139 a[*m - *n + j + j * a_dim1] = 1.; 00140 } 00141 /* L20: */ 00142 } 00143 } 00144 00145 i__1 = *k; 00146 for (i__ = 1; i__ <= i__1; ++i__) { 00147 ii = *m - *k + i__; 00148 00149 /* Apply H(i) to A(1:m-k+i,1:n-k+i) from the right */ 00150 00151 a[ii + (*n - *m + ii) * a_dim1] = 1.; 00152 i__2 = ii - 1; 00153 i__3 = *n - *m + ii; 00154 dlarf_("Right", &i__2, &i__3, &a[ii + a_dim1], lda, &tau[i__], &a[ 00155 a_offset], lda, &work[1]); 00156 i__2 = *n - *m + ii - 1; 00157 d__1 = -tau[i__]; 00158 dscal_(&i__2, &d__1, &a[ii + a_dim1], lda); 00159 a[ii + (*n - *m + ii) * a_dim1] = 1. - tau[i__]; 00160 00161 /* Set A(m-k+i,n-k+i+1:n) to zero */ 00162 00163 i__2 = *n; 00164 for (l = *n - *m + ii + 1; l <= i__2; ++l) { 00165 a[ii + l * a_dim1] = 0.; 00166 /* L30: */ 00167 } 00168 /* L40: */ 00169 } 00170 return 0; 00171 00172 /* End of DORGR2 */ 00173 00174 } /* dorgr2_ */