00001 /* dorg2r.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dorg2r_(integer *m, integer *n, integer *k, doublereal * 00021 a, integer *lda, doublereal *tau, doublereal *work, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, i__1, i__2; 00025 doublereal d__1; 00026 00027 /* Local variables */ 00028 integer i__, j, l; 00029 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00030 integer *), dlarf_(char *, integer *, integer *, doublereal *, 00031 integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *); 00032 00033 00034 /* -- LAPACK routine (version 3.2) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* DORG2R generates an m by n real matrix Q with orthonormal columns, */ 00047 /* which is defined as the first n columns of a product of k elementary */ 00048 /* reflectors of order m */ 00049 00050 /* Q = H(1) H(2) . . . H(k) */ 00051 00052 /* as returned by DGEQRF. */ 00053 00054 /* Arguments */ 00055 /* ========= */ 00056 00057 /* M (input) INTEGER */ 00058 /* The number of rows of the matrix Q. M >= 0. */ 00059 00060 /* N (input) INTEGER */ 00061 /* The number of columns of the matrix Q. M >= N >= 0. */ 00062 00063 /* K (input) INTEGER */ 00064 /* The number of elementary reflectors whose product defines the */ 00065 /* matrix Q. N >= K >= 0. */ 00066 00067 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00068 /* On entry, the i-th column must contain the vector which */ 00069 /* defines the elementary reflector H(i), for i = 1,2,...,k, as */ 00070 /* returned by DGEQRF in the first k columns of its array */ 00071 /* argument A. */ 00072 /* On exit, the m-by-n matrix Q. */ 00073 00074 /* LDA (input) INTEGER */ 00075 /* The first dimension of the array A. LDA >= max(1,M). */ 00076 00077 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00078 /* TAU(i) must contain the scalar factor of the elementary */ 00079 /* reflector H(i), as returned by DGEQRF. */ 00080 00081 /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00082 00083 /* INFO (output) INTEGER */ 00084 /* = 0: successful exit */ 00085 /* < 0: if INFO = -i, the i-th argument has an illegal value */ 00086 00087 /* ===================================================================== */ 00088 00089 /* .. Parameters .. */ 00090 /* .. */ 00091 /* .. Local Scalars .. */ 00092 /* .. */ 00093 /* .. External Subroutines .. */ 00094 /* .. */ 00095 /* .. Intrinsic Functions .. */ 00096 /* .. */ 00097 /* .. Executable Statements .. */ 00098 00099 /* Test the input arguments */ 00100 00101 /* Parameter adjustments */ 00102 a_dim1 = *lda; 00103 a_offset = 1 + a_dim1; 00104 a -= a_offset; 00105 --tau; 00106 --work; 00107 00108 /* Function Body */ 00109 *info = 0; 00110 if (*m < 0) { 00111 *info = -1; 00112 } else if (*n < 0 || *n > *m) { 00113 *info = -2; 00114 } else if (*k < 0 || *k > *n) { 00115 *info = -3; 00116 } else if (*lda < max(1,*m)) { 00117 *info = -5; 00118 } 00119 if (*info != 0) { 00120 i__1 = -(*info); 00121 xerbla_("DORG2R", &i__1); 00122 return 0; 00123 } 00124 00125 /* Quick return if possible */ 00126 00127 if (*n <= 0) { 00128 return 0; 00129 } 00130 00131 /* Initialise columns k+1:n to columns of the unit matrix */ 00132 00133 i__1 = *n; 00134 for (j = *k + 1; j <= i__1; ++j) { 00135 i__2 = *m; 00136 for (l = 1; l <= i__2; ++l) { 00137 a[l + j * a_dim1] = 0.; 00138 /* L10: */ 00139 } 00140 a[j + j * a_dim1] = 1.; 00141 /* L20: */ 00142 } 00143 00144 for (i__ = *k; i__ >= 1; --i__) { 00145 00146 /* Apply H(i) to A(i:m,i:n) from the left */ 00147 00148 if (i__ < *n) { 00149 a[i__ + i__ * a_dim1] = 1.; 00150 i__1 = *m - i__ + 1; 00151 i__2 = *n - i__; 00152 dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[ 00153 i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); 00154 } 00155 if (i__ < *m) { 00156 i__1 = *m - i__; 00157 d__1 = -tau[i__]; 00158 dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1); 00159 } 00160 a[i__ + i__ * a_dim1] = 1. - tau[i__]; 00161 00162 /* Set A(1:i-1,i) to zero */ 00163 00164 i__1 = i__ - 1; 00165 for (l = 1; l <= i__1; ++l) { 00166 a[l + i__ * a_dim1] = 0.; 00167 /* L30: */ 00168 } 00169 /* L40: */ 00170 } 00171 return 0; 00172 00173 /* End of DORG2R */ 00174 00175 } /* dorg2r_ */