dopgtr.c
Go to the documentation of this file.
00001 /* dopgtr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dopgtr_(char *uplo, integer *n, doublereal *ap, 
00017         doublereal *tau, doublereal *q, integer *ldq, doublereal *work, 
00018         integer *info)
00019 {
00020     /* System generated locals */
00021     integer q_dim1, q_offset, i__1, i__2, i__3;
00022 
00023     /* Local variables */
00024     integer i__, j, ij;
00025     extern logical lsame_(char *, char *);
00026     integer iinfo;
00027     logical upper;
00028     extern /* Subroutine */ int dorg2l_(integer *, integer *, integer *, 
00029             doublereal *, integer *, doublereal *, doublereal *, integer *), 
00030             dorg2r_(integer *, integer *, integer *, doublereal *, integer *, 
00031             doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
00032 
00033 
00034 /*  -- LAPACK routine (version 3.2) -- */
00035 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00036 /*     November 2006 */
00037 
00038 /*     .. Scalar Arguments .. */
00039 /*     .. */
00040 /*     .. Array Arguments .. */
00041 /*     .. */
00042 
00043 /*  Purpose */
00044 /*  ======= */
00045 
00046 /*  DOPGTR generates a real orthogonal matrix Q which is defined as the */
00047 /*  product of n-1 elementary reflectors H(i) of order n, as returned by */
00048 /*  DSPTRD using packed storage: */
00049 
00050 /*  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), */
00051 
00052 /*  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). */
00053 
00054 /*  Arguments */
00055 /*  ========= */
00056 
00057 /*  UPLO    (input) CHARACTER*1 */
00058 /*          = 'U': Upper triangular packed storage used in previous */
00059 /*                 call to DSPTRD; */
00060 /*          = 'L': Lower triangular packed storage used in previous */
00061 /*                 call to DSPTRD. */
00062 
00063 /*  N       (input) INTEGER */
00064 /*          The order of the matrix Q. N >= 0. */
00065 
00066 /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
00067 /*          The vectors which define the elementary reflectors, as */
00068 /*          returned by DSPTRD. */
00069 
00070 /*  TAU     (input) DOUBLE PRECISION array, dimension (N-1) */
00071 /*          TAU(i) must contain the scalar factor of the elementary */
00072 /*          reflector H(i), as returned by DSPTRD. */
00073 
00074 /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) */
00075 /*          The N-by-N orthogonal matrix Q. */
00076 
00077 /*  LDQ     (input) INTEGER */
00078 /*          The leading dimension of the array Q. LDQ >= max(1,N). */
00079 
00080 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N-1) */
00081 
00082 /*  INFO    (output) INTEGER */
00083 /*          = 0:  successful exit */
00084 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00085 
00086 /*  ===================================================================== */
00087 
00088 /*     .. Parameters .. */
00089 /*     .. */
00090 /*     .. Local Scalars .. */
00091 /*     .. */
00092 /*     .. External Functions .. */
00093 /*     .. */
00094 /*     .. External Subroutines .. */
00095 /*     .. */
00096 /*     .. Intrinsic Functions .. */
00097 /*     .. */
00098 /*     .. Executable Statements .. */
00099 
00100 /*     Test the input arguments */
00101 
00102     /* Parameter adjustments */
00103     --ap;
00104     --tau;
00105     q_dim1 = *ldq;
00106     q_offset = 1 + q_dim1;
00107     q -= q_offset;
00108     --work;
00109 
00110     /* Function Body */
00111     *info = 0;
00112     upper = lsame_(uplo, "U");
00113     if (! upper && ! lsame_(uplo, "L")) {
00114         *info = -1;
00115     } else if (*n < 0) {
00116         *info = -2;
00117     } else if (*ldq < max(1,*n)) {
00118         *info = -6;
00119     }
00120     if (*info != 0) {
00121         i__1 = -(*info);
00122         xerbla_("DOPGTR", &i__1);
00123         return 0;
00124     }
00125 
00126 /*     Quick return if possible */
00127 
00128     if (*n == 0) {
00129         return 0;
00130     }
00131 
00132     if (upper) {
00133 
00134 /*        Q was determined by a call to DSPTRD with UPLO = 'U' */
00135 
00136 /*        Unpack the vectors which define the elementary reflectors and */
00137 /*        set the last row and column of Q equal to those of the unit */
00138 /*        matrix */
00139 
00140         ij = 2;
00141         i__1 = *n - 1;
00142         for (j = 1; j <= i__1; ++j) {
00143             i__2 = j - 1;
00144             for (i__ = 1; i__ <= i__2; ++i__) {
00145                 q[i__ + j * q_dim1] = ap[ij];
00146                 ++ij;
00147 /* L10: */
00148             }
00149             ij += 2;
00150             q[*n + j * q_dim1] = 0.;
00151 /* L20: */
00152         }
00153         i__1 = *n - 1;
00154         for (i__ = 1; i__ <= i__1; ++i__) {
00155             q[i__ + *n * q_dim1] = 0.;
00156 /* L30: */
00157         }
00158         q[*n + *n * q_dim1] = 1.;
00159 
00160 /*        Generate Q(1:n-1,1:n-1) */
00161 
00162         i__1 = *n - 1;
00163         i__2 = *n - 1;
00164         i__3 = *n - 1;
00165         dorg2l_(&i__1, &i__2, &i__3, &q[q_offset], ldq, &tau[1], &work[1], &
00166                 iinfo);
00167 
00168     } else {
00169 
00170 /*        Q was determined by a call to DSPTRD with UPLO = 'L'. */
00171 
00172 /*        Unpack the vectors which define the elementary reflectors and */
00173 /*        set the first row and column of Q equal to those of the unit */
00174 /*        matrix */
00175 
00176         q[q_dim1 + 1] = 1.;
00177         i__1 = *n;
00178         for (i__ = 2; i__ <= i__1; ++i__) {
00179             q[i__ + q_dim1] = 0.;
00180 /* L40: */
00181         }
00182         ij = 3;
00183         i__1 = *n;
00184         for (j = 2; j <= i__1; ++j) {
00185             q[j * q_dim1 + 1] = 0.;
00186             i__2 = *n;
00187             for (i__ = j + 1; i__ <= i__2; ++i__) {
00188                 q[i__ + j * q_dim1] = ap[ij];
00189                 ++ij;
00190 /* L50: */
00191             }
00192             ij += 2;
00193 /* L60: */
00194         }
00195         if (*n > 1) {
00196 
00197 /*           Generate Q(2:n,2:n) */
00198 
00199             i__1 = *n - 1;
00200             i__2 = *n - 1;
00201             i__3 = *n - 1;
00202             dorg2r_(&i__1, &i__2, &i__3, &q[(q_dim1 << 1) + 2], ldq, &tau[1], 
00203                     &work[1], &iinfo);
00204         }
00205     }
00206     return 0;
00207 
00208 /*     End of DOPGTR */
00209 
00210 } /* dopgtr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:47