00001 /* dlatm1.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dlatm1_(integer *mode, doublereal *cond, integer *irsign, 00017 integer *idist, integer *iseed, doublereal *d__, integer *n, integer 00018 *info) 00019 { 00020 /* System generated locals */ 00021 integer i__1, i__2; 00022 doublereal d__1; 00023 00024 /* Builtin functions */ 00025 double pow_dd(doublereal *, doublereal *), pow_di(doublereal *, integer *) 00026 , log(doublereal), exp(doublereal); 00027 00028 /* Local variables */ 00029 integer i__; 00030 doublereal temp, alpha; 00031 extern doublereal dlaran_(integer *); 00032 extern /* Subroutine */ int xerbla_(char *, integer *), dlarnv_( 00033 integer *, integer *, integer *, doublereal *); 00034 00035 00036 /* -- LAPACK auxiliary test routine (version 3.1) -- */ 00037 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00038 /* November 2006 */ 00039 00040 /* .. Scalar Arguments .. */ 00041 /* .. */ 00042 /* .. Array Arguments .. */ 00043 /* .. */ 00044 00045 /* Purpose */ 00046 /* ======= */ 00047 00048 /* DLATM1 computes the entries of D(1..N) as specified by */ 00049 /* MODE, COND and IRSIGN. IDIST and ISEED determine the generation */ 00050 /* of random numbers. DLATM1 is called by SLATMR to generate */ 00051 /* random test matrices for LAPACK programs. */ 00052 00053 /* Arguments */ 00054 /* ========= */ 00055 00056 /* MODE - INTEGER */ 00057 /* On entry describes how D is to be computed: */ 00058 /* MODE = 0 means do not change D. */ 00059 /* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */ 00060 /* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */ 00061 /* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */ 00062 /* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */ 00063 /* MODE = 5 sets D to random numbers in the range */ 00064 /* ( 1/COND , 1 ) such that their logarithms */ 00065 /* are uniformly distributed. */ 00066 /* MODE = 6 set D to random numbers from same distribution */ 00067 /* as the rest of the matrix. */ 00068 /* MODE < 0 has the same meaning as ABS(MODE), except that */ 00069 /* the order of the elements of D is reversed. */ 00070 /* Thus if MODE is positive, D has entries ranging from */ 00071 /* 1 to 1/COND, if negative, from 1/COND to 1, */ 00072 /* Not modified. */ 00073 00074 /* COND - DOUBLE PRECISION */ 00075 /* On entry, used as described under MODE above. */ 00076 /* If used, it must be >= 1. Not modified. */ 00077 00078 /* IRSIGN - INTEGER */ 00079 /* On entry, if MODE neither -6, 0 nor 6, determines sign of */ 00080 /* entries of D */ 00081 /* 0 => leave entries of D unchanged */ 00082 /* 1 => multiply each entry of D by 1 or -1 with probability .5 */ 00083 00084 /* IDIST - CHARACTER*1 */ 00085 /* On entry, IDIST specifies the type of distribution to be */ 00086 /* used to generate a random matrix . */ 00087 /* 1 => UNIFORM( 0, 1 ) */ 00088 /* 2 => UNIFORM( -1, 1 ) */ 00089 /* 3 => NORMAL( 0, 1 ) */ 00090 /* Not modified. */ 00091 00092 /* ISEED - INTEGER array, dimension ( 4 ) */ 00093 /* On entry ISEED specifies the seed of the random number */ 00094 /* generator. The random number generator uses a */ 00095 /* linear congruential sequence limited to small */ 00096 /* integers, and so should produce machine independent */ 00097 /* random numbers. The values of ISEED are changed on */ 00098 /* exit, and can be used in the next call to DLATM1 */ 00099 /* to continue the same random number sequence. */ 00100 /* Changed on exit. */ 00101 00102 /* D - DOUBLE PRECISION array, dimension ( MIN( M , N ) ) */ 00103 /* Array to be computed according to MODE, COND and IRSIGN. */ 00104 /* May be changed on exit if MODE is nonzero. */ 00105 00106 /* N - INTEGER */ 00107 /* Number of entries of D. Not modified. */ 00108 00109 /* INFO - INTEGER */ 00110 /* 0 => normal termination */ 00111 /* -1 => if MODE not in range -6 to 6 */ 00112 /* -2 => if MODE neither -6, 0 nor 6, and */ 00113 /* IRSIGN neither 0 nor 1 */ 00114 /* -3 => if MODE neither -6, 0 nor 6 and COND less than 1 */ 00115 /* -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 3 */ 00116 /* -7 => if N negative */ 00117 00118 /* ===================================================================== */ 00119 00120 /* .. Parameters .. */ 00121 /* .. */ 00122 /* .. Local Scalars .. */ 00123 /* .. */ 00124 /* .. External Functions .. */ 00125 /* .. */ 00126 /* .. External Subroutines .. */ 00127 /* .. */ 00128 /* .. Intrinsic Functions .. */ 00129 /* .. */ 00130 /* .. Executable Statements .. */ 00131 00132 /* Decode and Test the input parameters. Initialize flags & seed. */ 00133 00134 /* Parameter adjustments */ 00135 --d__; 00136 --iseed; 00137 00138 /* Function Body */ 00139 *info = 0; 00140 00141 /* Quick return if possible */ 00142 00143 if (*n == 0) { 00144 return 0; 00145 } 00146 00147 /* Set INFO if an error */ 00148 00149 if (*mode < -6 || *mode > 6) { 00150 *info = -1; 00151 } else if (*mode != -6 && *mode != 0 && *mode != 6 && (*irsign != 0 && * 00152 irsign != 1)) { 00153 *info = -2; 00154 } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) { 00155 *info = -3; 00156 } else if ((*mode == 6 || *mode == -6) && (*idist < 1 || *idist > 3)) { 00157 *info = -4; 00158 } else if (*n < 0) { 00159 *info = -7; 00160 } 00161 00162 if (*info != 0) { 00163 i__1 = -(*info); 00164 xerbla_("DLATM1", &i__1); 00165 return 0; 00166 } 00167 00168 /* Compute D according to COND and MODE */ 00169 00170 if (*mode != 0) { 00171 switch (abs(*mode)) { 00172 case 1: goto L10; 00173 case 2: goto L30; 00174 case 3: goto L50; 00175 case 4: goto L70; 00176 case 5: goto L90; 00177 case 6: goto L110; 00178 } 00179 00180 /* One large D value: */ 00181 00182 L10: 00183 i__1 = *n; 00184 for (i__ = 1; i__ <= i__1; ++i__) { 00185 d__[i__] = 1. / *cond; 00186 /* L20: */ 00187 } 00188 d__[1] = 1.; 00189 goto L120; 00190 00191 /* One small D value: */ 00192 00193 L30: 00194 i__1 = *n; 00195 for (i__ = 1; i__ <= i__1; ++i__) { 00196 d__[i__] = 1.; 00197 /* L40: */ 00198 } 00199 d__[*n] = 1. / *cond; 00200 goto L120; 00201 00202 /* Exponentially distributed D values: */ 00203 00204 L50: 00205 d__[1] = 1.; 00206 if (*n > 1) { 00207 d__1 = -1. / (doublereal) (*n - 1); 00208 alpha = pow_dd(cond, &d__1); 00209 i__1 = *n; 00210 for (i__ = 2; i__ <= i__1; ++i__) { 00211 i__2 = i__ - 1; 00212 d__[i__] = pow_di(&alpha, &i__2); 00213 /* L60: */ 00214 } 00215 } 00216 goto L120; 00217 00218 /* Arithmetically distributed D values: */ 00219 00220 L70: 00221 d__[1] = 1.; 00222 if (*n > 1) { 00223 temp = 1. / *cond; 00224 alpha = (1. - temp) / (doublereal) (*n - 1); 00225 i__1 = *n; 00226 for (i__ = 2; i__ <= i__1; ++i__) { 00227 d__[i__] = (doublereal) (*n - i__) * alpha + temp; 00228 /* L80: */ 00229 } 00230 } 00231 goto L120; 00232 00233 /* Randomly distributed D values on ( 1/COND , 1): */ 00234 00235 L90: 00236 alpha = log(1. / *cond); 00237 i__1 = *n; 00238 for (i__ = 1; i__ <= i__1; ++i__) { 00239 d__[i__] = exp(alpha * dlaran_(&iseed[1])); 00240 /* L100: */ 00241 } 00242 goto L120; 00243 00244 /* Randomly distributed D values from IDIST */ 00245 00246 L110: 00247 dlarnv_(idist, &iseed[1], n, &d__[1]); 00248 00249 L120: 00250 00251 /* If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign */ 00252 /* random signs to D */ 00253 00254 if (*mode != -6 && *mode != 0 && *mode != 6 && *irsign == 1) { 00255 i__1 = *n; 00256 for (i__ = 1; i__ <= i__1; ++i__) { 00257 temp = dlaran_(&iseed[1]); 00258 if (temp > .5) { 00259 d__[i__] = -d__[i__]; 00260 } 00261 /* L130: */ 00262 } 00263 } 00264 00265 /* Reverse if MODE < 0 */ 00266 00267 if (*mode < 0) { 00268 i__1 = *n / 2; 00269 for (i__ = 1; i__ <= i__1; ++i__) { 00270 temp = d__[i__]; 00271 d__[i__] = d__[*n + 1 - i__]; 00272 d__[*n + 1 - i__] = temp; 00273 /* L140: */ 00274 } 00275 } 00276 00277 } 00278 00279 return 0; 00280 00281 /* End of DLATM1 */ 00282 00283 } /* dlatm1_ */