dlat2s.c
Go to the documentation of this file.
00001 /* dlat2s.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dlat2s_(char *uplo, integer *n, doublereal *a, integer *
00017         lda, real *sa, integer *ldsa, integer *info)
00018 {
00019     /* System generated locals */
00020     integer sa_dim1, sa_offset, a_dim1, a_offset, i__1, i__2;
00021 
00022     /* Local variables */
00023     integer i__, j;
00024     doublereal rmax;
00025     extern logical lsame_(char *, char *);
00026     logical upper;
00027     extern doublereal slamch_(char *);
00028 
00029 
00030 /*  -- LAPACK PROTOTYPE auxiliary routine (version 3.1.2) -- */
00031 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00032 /*     May 2007 */
00033 
00034 /*     .. Scalar Arguments .. */
00035 /*     .. */
00036 /*     .. Array Arguments .. */
00037 /*     .. */
00038 
00039 /*  Purpose */
00040 /*  ======= */
00041 
00042 /*  DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE */
00043 /*  PRECISION triangular matrix, A. */
00044 
00045 /*  RMAX is the overflow for the SINGLE PRECISION arithmetic */
00046 /*  DLAS2S checks that all the entries of A are between -RMAX and */
00047 /*  RMAX. If not the convertion is aborted and a flag is raised. */
00048 
00049 /*  This is an auxiliary routine so there is no argument checking. */
00050 
00051 /*  Arguments */
00052 /*  ========= */
00053 
00054 /*  UPLO    (input) CHARACTER*1 */
00055 /*          = 'U':  A is upper triangular; */
00056 /*          = 'L':  A is lower triangular. */
00057 
00058 /*  N       (input) INTEGER */
00059 /*          The number of rows and columns of the matrix A.  N >= 0. */
00060 
00061 /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00062 /*          On entry, the N-by-N triangular coefficient matrix A. */
00063 
00064 /*  LDA     (input) INTEGER */
00065 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00066 
00067 /*  SA      (output) REAL array, dimension (LDSA,N) */
00068 /*          Only the UPLO part of SA is referenced.  On exit, if INFO=0, */
00069 /*          the N-by-N coefficient matrix SA; if INFO>0, the content of */
00070 /*          the UPLO part of SA is unspecified. */
00071 
00072 /*  LDSA    (input) INTEGER */
00073 /*          The leading dimension of the array SA.  LDSA >= max(1,M). */
00074 
00075 /*  INFO    (output) INTEGER */
00076 /*          = 0:  successful exit. */
00077 /*          = 1:  an entry of the matrix A is greater than the SINGLE */
00078 /*                PRECISION overflow threshold, in this case, the content */
00079 /*                of the UPLO part of SA in exit is unspecified. */
00080 
00081 /*  ========= */
00082 
00083 /*     .. Local Scalars .. */
00084 /*     .. */
00085 /*     .. External Functions .. */
00086 /*     .. */
00087 /*     .. Executable Statements .. */
00088 
00089     /* Parameter adjustments */
00090     a_dim1 = *lda;
00091     a_offset = 1 + a_dim1;
00092     a -= a_offset;
00093     sa_dim1 = *ldsa;
00094     sa_offset = 1 + sa_dim1;
00095     sa -= sa_offset;
00096 
00097     /* Function Body */
00098     rmax = slamch_("O");
00099     upper = lsame_(uplo, "U");
00100     if (upper) {
00101         i__1 = *n;
00102         for (j = 1; j <= i__1; ++j) {
00103             i__2 = j;
00104             for (i__ = 1; i__ <= i__2; ++i__) {
00105                 if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax)
00106                          {
00107                     *info = 1;
00108                     goto L50;
00109                 }
00110                 sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1];
00111 /* L10: */
00112             }
00113 /* L20: */
00114         }
00115     } else {
00116         i__1 = *n;
00117         for (j = 1; j <= i__1; ++j) {
00118             i__2 = *n;
00119             for (i__ = j; i__ <= i__2; ++i__) {
00120                 if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax)
00121                          {
00122                     *info = 1;
00123                     goto L50;
00124                 }
00125                 sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1];
00126 /* L30: */
00127             }
00128 /* L40: */
00129         }
00130     }
00131 L50:
00132 
00133     return 0;
00134 
00135 /*     End of DLAT2S */
00136 
00137 } /* dlat2s_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46