dlaruv.c
Go to the documentation of this file.
00001 /* dlaruv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dlaruv_(integer *iseed, integer *n, doublereal *x)
00017 {
00018     /* Initialized data */
00019 
00020     static integer mm[512]      /* was [128][4] */ = { 494,2637,255,2008,1253,
00021             3344,4084,1739,3143,3468,688,1657,1238,3166,1292,3422,1270,2016,
00022             154,2862,697,1706,491,931,1444,444,3577,3944,2184,1661,3482,657,
00023             3023,3618,1267,1828,164,3798,3087,2400,2870,3876,1905,1593,1797,
00024             1234,3460,328,2861,1950,617,2070,3331,769,1558,2412,2800,189,287,
00025             2045,1227,2838,209,2770,3654,3993,192,2253,3491,2889,2857,2094,
00026             1818,688,1407,634,3231,815,3524,1914,516,164,303,2144,3480,119,
00027             3357,837,2826,2332,2089,3780,1700,3712,150,2000,3375,1621,3090,
00028             3765,1149,3146,33,3082,2741,359,3316,1749,185,2784,2202,2199,1364,
00029             1244,2020,3160,2785,2772,1217,1822,1245,2252,3904,2774,997,2573,
00030             1148,545,322,789,1440,752,2859,123,1848,643,2405,2638,2344,46,
00031             3814,913,3649,339,3808,822,2832,3078,3633,2970,637,2249,2081,4019,
00032             1478,242,481,2075,4058,622,3376,812,234,641,4005,1122,3135,2640,
00033             2302,40,1832,2247,2034,2637,1287,1691,496,1597,2394,2584,1843,336,
00034             1472,2407,433,2096,1761,2810,566,442,41,1238,1086,603,840,3168,
00035             1499,1084,3438,2408,1589,2391,288,26,512,1456,171,1677,2657,2270,
00036             2587,2961,1970,1817,676,1410,3723,2803,3185,184,663,499,3784,1631,
00037             1925,3912,1398,1349,1441,2224,2411,1907,3192,2786,382,37,759,2948,
00038             1862,3802,2423,2051,2295,1332,1832,2405,3638,3661,327,3660,716,
00039             1842,3987,1368,1848,2366,2508,3754,1766,3572,2893,307,1297,3966,
00040             758,2598,3406,2922,1038,2934,2091,2451,1580,1958,2055,1507,1078,
00041             3273,17,854,2916,3971,2889,3831,2621,1541,893,736,3992,787,2125,
00042             2364,2460,257,1574,3912,1216,3248,3401,2124,2762,149,2245,166,466,
00043             4018,1399,190,2879,153,2320,18,712,2159,2318,2091,3443,1510,449,
00044             1956,2201,3137,3399,1321,2271,3667,2703,629,2365,2431,1113,3922,
00045             2554,184,2099,3228,4012,1921,3452,3901,572,3309,3171,817,3039,
00046             1696,1256,3715,2077,3019,1497,1101,717,51,981,1978,1813,3881,76,
00047             3846,3694,1682,124,1660,3997,479,1141,886,3514,1301,3604,1888,
00048             1836,1990,2058,692,1194,20,3285,2046,2107,3508,3525,3801,2549,
00049             1145,2253,305,3301,1065,3133,2913,3285,1241,1197,3729,2501,1673,
00050             541,2753,949,2361,1165,4081,2725,3305,3069,3617,3733,409,2157,
00051             1361,3973,1865,2525,1409,3445,3577,77,3761,2149,1449,3005,225,85,
00052             3673,3117,3089,1349,2057,413,65,1845,697,3085,3441,1573,3689,2941,
00053             929,533,2841,4077,721,2821,2249,2397,2817,245,1913,1997,3121,997,
00054             1833,2877,1633,981,2009,941,2449,197,2441,285,1473,2741,3129,909,
00055             2801,421,4073,2813,2337,1429,1177,1901,81,1669,2633,2269,129,1141,
00056             249,3917,2481,3941,2217,2749,3041,1877,345,2861,1809,3141,2825,
00057             157,2881,3637,1465,2829,2161,3365,361,2685,3745,2325,3609,3821,
00058             3537,517,3017,2141,1537 };
00059 
00060     /* System generated locals */
00061     integer i__1;
00062 
00063     /* Local variables */
00064     integer i__, i1, i2, i3, i4, it1, it2, it3, it4;
00065 
00066 
00067 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00068 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00069 /*     November 2006 */
00070 
00071 /*     .. Scalar Arguments .. */
00072 /*     .. */
00073 /*     .. Array Arguments .. */
00074 /*     .. */
00075 
00076 /*  Purpose */
00077 /*  ======= */
00078 
00079 /*  DLARUV returns a vector of n random real numbers from a uniform (0,1) */
00080 /*  distribution (n <= 128). */
00081 
00082 /*  This is an auxiliary routine called by DLARNV and ZLARNV. */
00083 
00084 /*  Arguments */
00085 /*  ========= */
00086 
00087 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00088 /*          On entry, the seed of the random number generator; the array */
00089 /*          elements must be between 0 and 4095, and ISEED(4) must be */
00090 /*          odd. */
00091 /*          On exit, the seed is updated. */
00092 
00093 /*  N       (input) INTEGER */
00094 /*          The number of random numbers to be generated. N <= 128. */
00095 
00096 /*  X       (output) DOUBLE PRECISION array, dimension (N) */
00097 /*          The generated random numbers. */
00098 
00099 /*  Further Details */
00100 /*  =============== */
00101 
00102 /*  This routine uses a multiplicative congruential method with modulus */
00103 /*  2**48 and multiplier 33952834046453 (see G.S.Fishman, */
00104 /*  'Multiplicative congruential random number generators with modulus */
00105 /*  2**b: an exhaustive analysis for b = 32 and a partial analysis for */
00106 /*  b = 48', Math. Comp. 189, pp 331-344, 1990). */
00107 
00108 /*  48-bit integers are stored in 4 integer array elements with 12 bits */
00109 /*  per element. Hence the routine is portable across machines with */
00110 /*  integers of 32 bits or more. */
00111 
00112 /*  ===================================================================== */
00113 
00114 /*     .. Parameters .. */
00115 /*     .. */
00116 /*     .. Local Scalars .. */
00117 /*     .. */
00118 /*     .. Local Arrays .. */
00119 /*     .. */
00120 /*     .. Intrinsic Functions .. */
00121 /*     .. */
00122 /*     .. Data statements .. */
00123     /* Parameter adjustments */
00124     --iseed;
00125     --x;
00126 
00127     /* Function Body */
00128 /*     .. */
00129 /*     .. Executable Statements .. */
00130 
00131     i1 = iseed[1];
00132     i2 = iseed[2];
00133     i3 = iseed[3];
00134     i4 = iseed[4];
00135 
00136     i__1 = min(*n,128);
00137     for (i__ = 1; i__ <= i__1; ++i__) {
00138 
00139 L20:
00140 
00141 /*        Multiply the seed by i-th power of the multiplier modulo 2**48 */
00142 
00143         it4 = i4 * mm[i__ + 383];
00144         it3 = it4 / 4096;
00145         it4 -= it3 << 12;
00146         it3 = it3 + i3 * mm[i__ + 383] + i4 * mm[i__ + 255];
00147         it2 = it3 / 4096;
00148         it3 -= it2 << 12;
00149         it2 = it2 + i2 * mm[i__ + 383] + i3 * mm[i__ + 255] + i4 * mm[i__ + 
00150                 127];
00151         it1 = it2 / 4096;
00152         it2 -= it1 << 12;
00153         it1 = it1 + i1 * mm[i__ + 383] + i2 * mm[i__ + 255] + i3 * mm[i__ + 
00154                 127] + i4 * mm[i__ - 1];
00155         it1 %= 4096;
00156 
00157 /*        Convert 48-bit integer to a real number in the interval (0,1) */
00158 
00159         x[i__] = ((doublereal) it1 + ((doublereal) it2 + ((doublereal) it3 + (
00160                 doublereal) it4 * 2.44140625e-4) * 2.44140625e-4) * 
00161                 2.44140625e-4) * 2.44140625e-4;
00162 
00163         if (x[i__] == 1.) {
00164 /*           If a real number has n bits of precision, and the first */
00165 /*           n bits of the 48-bit integer above happen to be all 1 (which */
00166 /*           will occur about once every 2**n calls), then X( I ) will */
00167 /*           be rounded to exactly 1.0. */
00168 /*           Since X( I ) is not supposed to return exactly 0.0 or 1.0, */
00169 /*           the statistically correct thing to do in this situation is */
00170 /*           simply to iterate again. */
00171 /*           N.B. the case X( I ) = 0.0 should not be possible. */
00172             i1 += 2;
00173             i2 += 2;
00174             i3 += 2;
00175             i4 += 2;
00176             goto L20;
00177         }
00178 
00179 /* L10: */
00180     }
00181 
00182 /*     Return final value of seed */
00183 
00184     iseed[1] = it1;
00185     iseed[2] = it2;
00186     iseed[3] = it3;
00187     iseed[4] = it4;
00188     return 0;
00189 
00190 /*     End of DLARUV */
00191 
00192 } /* dlaruv_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46