dlarfp.c
Go to the documentation of this file.
00001 /* dlarfp.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dlarfp_(integer *n, doublereal *alpha, doublereal *x, 
00017         integer *incx, doublereal *tau)
00018 {
00019     /* System generated locals */
00020     integer i__1;
00021     doublereal d__1;
00022 
00023     /* Builtin functions */
00024     double d_sign(doublereal *, doublereal *);
00025 
00026     /* Local variables */
00027     integer j, knt;
00028     doublereal beta;
00029     extern doublereal dnrm2_(integer *, doublereal *, integer *);
00030     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
00031             integer *);
00032     doublereal xnorm;
00033     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
00034     doublereal safmin, rsafmn;
00035 
00036 
00037 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00038 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00039 /*     November 2006 */
00040 
00041 /*     .. Scalar Arguments .. */
00042 /*     .. */
00043 /*     .. Array Arguments .. */
00044 /*     .. */
00045 
00046 /*  Purpose */
00047 /*  ======= */
00048 
00049 /*  DLARFP generates a real elementary reflector H of order n, such */
00050 /*  that */
00051 
00052 /*        H * ( alpha ) = ( beta ),   H' * H = I. */
00053 /*            (   x   )   (   0  ) */
00054 
00055 /*  where alpha and beta are scalars, beta is non-negative, and x is */
00056 /*  an (n-1)-element real vector.  H is represented in the form */
00057 
00058 /*        H = I - tau * ( 1 ) * ( 1 v' ) , */
00059 /*                      ( v ) */
00060 
00061 /*  where tau is a real scalar and v is a real (n-1)-element */
00062 /*  vector. */
00063 
00064 /*  If the elements of x are all zero, then tau = 0 and H is taken to be */
00065 /*  the unit matrix. */
00066 
00067 /*  Otherwise  1 <= tau <= 2. */
00068 
00069 /*  Arguments */
00070 /*  ========= */
00071 
00072 /*  N       (input) INTEGER */
00073 /*          The order of the elementary reflector. */
00074 
00075 /*  ALPHA   (input/output) DOUBLE PRECISION */
00076 /*          On entry, the value alpha. */
00077 /*          On exit, it is overwritten with the value beta. */
00078 
00079 /*  X       (input/output) DOUBLE PRECISION array, dimension */
00080 /*                         (1+(N-2)*abs(INCX)) */
00081 /*          On entry, the vector x. */
00082 /*          On exit, it is overwritten with the vector v. */
00083 
00084 /*  INCX    (input) INTEGER */
00085 /*          The increment between elements of X. INCX > 0. */
00086 
00087 /*  TAU     (output) DOUBLE PRECISION */
00088 /*          The value tau. */
00089 
00090 /*  ===================================================================== */
00091 
00092 /*     .. Parameters .. */
00093 /*     .. */
00094 /*     .. Local Scalars .. */
00095 /*     .. */
00096 /*     .. External Functions .. */
00097 /*     .. */
00098 /*     .. Intrinsic Functions .. */
00099 /*     .. */
00100 /*     .. External Subroutines .. */
00101 /*     .. */
00102 /*     .. Executable Statements .. */
00103 
00104     /* Parameter adjustments */
00105     --x;
00106 
00107     /* Function Body */
00108     if (*n <= 0) {
00109         *tau = 0.;
00110         return 0;
00111     }
00112 
00113     i__1 = *n - 1;
00114     xnorm = dnrm2_(&i__1, &x[1], incx);
00115 
00116     if (xnorm == 0.) {
00117 
00118 /*        H  =  [+/-1, 0; I], sign chosen so ALPHA >= 0 */
00119 
00120         if (*alpha >= 0.) {
00121 /*           When TAU.eq.ZERO, the vector is special-cased to be */
00122 /*           all zeros in the application routines.  We do not need */
00123 /*           to clear it. */
00124             *tau = 0.;
00125         } else {
00126 /*           However, the application routines rely on explicit */
00127 /*           zero checks when TAU.ne.ZERO, and we must clear X. */
00128             *tau = 2.;
00129             i__1 = *n - 1;
00130             for (j = 1; j <= i__1; ++j) {
00131                 x[(j - 1) * *incx + 1] = 0.;
00132             }
00133             *alpha = -(*alpha);
00134         }
00135     } else {
00136 
00137 /*        general case */
00138 
00139         d__1 = dlapy2_(alpha, &xnorm);
00140         beta = d_sign(&d__1, alpha);
00141         safmin = dlamch_("S") / dlamch_("E");
00142         knt = 0;
00143         if (abs(beta) < safmin) {
00144 
00145 /*           XNORM, BETA may be inaccurate; scale X and recompute them */
00146 
00147             rsafmn = 1. / safmin;
00148 L10:
00149             ++knt;
00150             i__1 = *n - 1;
00151             dscal_(&i__1, &rsafmn, &x[1], incx);
00152             beta *= rsafmn;
00153             *alpha *= rsafmn;
00154             if (abs(beta) < safmin) {
00155                 goto L10;
00156             }
00157 
00158 /*           New BETA is at most 1, at least SAFMIN */
00159 
00160             i__1 = *n - 1;
00161             xnorm = dnrm2_(&i__1, &x[1], incx);
00162             d__1 = dlapy2_(alpha, &xnorm);
00163             beta = d_sign(&d__1, alpha);
00164         }
00165         *alpha += beta;
00166         if (beta < 0.) {
00167             beta = -beta;
00168             *tau = -(*alpha) / beta;
00169         } else {
00170             *alpha = xnorm * (xnorm / *alpha);
00171             *tau = *alpha / beta;
00172             *alpha = -(*alpha);
00173         }
00174         i__1 = *n - 1;
00175         d__1 = 1. / *alpha;
00176         dscal_(&i__1, &d__1, &x[1], incx);
00177 
00178 /*        If BETA is subnormal, it may lose relative accuracy */
00179 
00180         i__1 = knt;
00181         for (j = 1; j <= i__1; ++j) {
00182             beta *= safmin;
00183 /* L20: */
00184         }
00185         *alpha = beta;
00186     }
00187 
00188     return 0;
00189 
00190 /*     End of DLARFP */
00191 
00192 } /* dlarfp_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46