00001 /* dlarfg.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x, 00017 integer *incx, doublereal *tau) 00018 { 00019 /* System generated locals */ 00020 integer i__1; 00021 doublereal d__1; 00022 00023 /* Builtin functions */ 00024 double d_sign(doublereal *, doublereal *); 00025 00026 /* Local variables */ 00027 integer j, knt; 00028 doublereal beta; 00029 extern doublereal dnrm2_(integer *, doublereal *, integer *); 00030 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00031 integer *); 00032 doublereal xnorm; 00033 extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); 00034 doublereal safmin, rsafmn; 00035 00036 00037 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00038 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00039 /* November 2006 */ 00040 00041 /* .. Scalar Arguments .. */ 00042 /* .. */ 00043 /* .. Array Arguments .. */ 00044 /* .. */ 00045 00046 /* Purpose */ 00047 /* ======= */ 00048 00049 /* DLARFG generates a real elementary reflector H of order n, such */ 00050 /* that */ 00051 00052 /* H * ( alpha ) = ( beta ), H' * H = I. */ 00053 /* ( x ) ( 0 ) */ 00054 00055 /* where alpha and beta are scalars, and x is an (n-1)-element real */ 00056 /* vector. H is represented in the form */ 00057 00058 /* H = I - tau * ( 1 ) * ( 1 v' ) , */ 00059 /* ( v ) */ 00060 00061 /* where tau is a real scalar and v is a real (n-1)-element */ 00062 /* vector. */ 00063 00064 /* If the elements of x are all zero, then tau = 0 and H is taken to be */ 00065 /* the unit matrix. */ 00066 00067 /* Otherwise 1 <= tau <= 2. */ 00068 00069 /* Arguments */ 00070 /* ========= */ 00071 00072 /* N (input) INTEGER */ 00073 /* The order of the elementary reflector. */ 00074 00075 /* ALPHA (input/output) DOUBLE PRECISION */ 00076 /* On entry, the value alpha. */ 00077 /* On exit, it is overwritten with the value beta. */ 00078 00079 /* X (input/output) DOUBLE PRECISION array, dimension */ 00080 /* (1+(N-2)*abs(INCX)) */ 00081 /* On entry, the vector x. */ 00082 /* On exit, it is overwritten with the vector v. */ 00083 00084 /* INCX (input) INTEGER */ 00085 /* The increment between elements of X. INCX > 0. */ 00086 00087 /* TAU (output) DOUBLE PRECISION */ 00088 /* The value tau. */ 00089 00090 /* ===================================================================== */ 00091 00092 /* .. Parameters .. */ 00093 /* .. */ 00094 /* .. Local Scalars .. */ 00095 /* .. */ 00096 /* .. External Functions .. */ 00097 /* .. */ 00098 /* .. Intrinsic Functions .. */ 00099 /* .. */ 00100 /* .. External Subroutines .. */ 00101 /* .. */ 00102 /* .. Executable Statements .. */ 00103 00104 /* Parameter adjustments */ 00105 --x; 00106 00107 /* Function Body */ 00108 if (*n <= 1) { 00109 *tau = 0.; 00110 return 0; 00111 } 00112 00113 i__1 = *n - 1; 00114 xnorm = dnrm2_(&i__1, &x[1], incx); 00115 00116 if (xnorm == 0.) { 00117 00118 /* H = I */ 00119 00120 *tau = 0.; 00121 } else { 00122 00123 /* general case */ 00124 00125 d__1 = dlapy2_(alpha, &xnorm); 00126 beta = -d_sign(&d__1, alpha); 00127 safmin = dlamch_("S") / dlamch_("E"); 00128 knt = 0; 00129 if (abs(beta) < safmin) { 00130 00131 /* XNORM, BETA may be inaccurate; scale X and recompute them */ 00132 00133 rsafmn = 1. / safmin; 00134 L10: 00135 ++knt; 00136 i__1 = *n - 1; 00137 dscal_(&i__1, &rsafmn, &x[1], incx); 00138 beta *= rsafmn; 00139 *alpha *= rsafmn; 00140 if (abs(beta) < safmin) { 00141 goto L10; 00142 } 00143 00144 /* New BETA is at most 1, at least SAFMIN */ 00145 00146 i__1 = *n - 1; 00147 xnorm = dnrm2_(&i__1, &x[1], incx); 00148 d__1 = dlapy2_(alpha, &xnorm); 00149 beta = -d_sign(&d__1, alpha); 00150 } 00151 *tau = (beta - *alpha) / beta; 00152 i__1 = *n - 1; 00153 d__1 = 1. / (*alpha - beta); 00154 dscal_(&i__1, &d__1, &x[1], incx); 00155 00156 /* If ALPHA is subnormal, it may lose relative accuracy */ 00157 00158 i__1 = knt; 00159 for (j = 1; j <= i__1; ++j) { 00160 beta *= safmin; 00161 /* L20: */ 00162 } 00163 *alpha = beta; 00164 } 00165 00166 return 0; 00167 00168 /* End of DLARFG */ 00169 00170 } /* dlarfg_ */