00001 /* dlarf.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b4 = 1.; 00019 static doublereal c_b5 = 0.; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v, 00023 integer *incv, doublereal *tau, doublereal *c__, integer *ldc, 00024 doublereal *work) 00025 { 00026 /* System generated locals */ 00027 integer c_dim1, c_offset; 00028 doublereal d__1; 00029 00030 /* Local variables */ 00031 integer i__; 00032 logical applyleft; 00033 extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 00034 doublereal *, integer *, doublereal *, integer *, doublereal *, 00035 integer *); 00036 extern logical lsame_(char *, char *); 00037 extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 00038 doublereal *, doublereal *, integer *, doublereal *, integer *, 00039 doublereal *, doublereal *, integer *); 00040 integer lastc, lastv; 00041 extern integer iladlc_(integer *, integer *, doublereal *, integer *), 00042 iladlr_(integer *, integer *, doublereal *, integer *); 00043 00044 00045 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* DLARF applies a real elementary reflector H to a real m by n matrix */ 00058 /* C, from either the left or the right. H is represented in the form */ 00059 00060 /* H = I - tau * v * v' */ 00061 00062 /* where tau is a real scalar and v is a real vector. */ 00063 00064 /* If tau = 0, then H is taken to be the unit matrix. */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* SIDE (input) CHARACTER*1 */ 00070 /* = 'L': form H * C */ 00071 /* = 'R': form C * H */ 00072 00073 /* M (input) INTEGER */ 00074 /* The number of rows of the matrix C. */ 00075 00076 /* N (input) INTEGER */ 00077 /* The number of columns of the matrix C. */ 00078 00079 /* V (input) DOUBLE PRECISION array, dimension */ 00080 /* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */ 00081 /* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */ 00082 /* The vector v in the representation of H. V is not used if */ 00083 /* TAU = 0. */ 00084 00085 /* INCV (input) INTEGER */ 00086 /* The increment between elements of v. INCV <> 0. */ 00087 00088 /* TAU (input) DOUBLE PRECISION */ 00089 /* The value tau in the representation of H. */ 00090 00091 /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ 00092 /* On entry, the m by n matrix C. */ 00093 /* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */ 00094 /* or C * H if SIDE = 'R'. */ 00095 00096 /* LDC (input) INTEGER */ 00097 /* The leading dimension of the array C. LDC >= max(1,M). */ 00098 00099 /* WORK (workspace) DOUBLE PRECISION array, dimension */ 00100 /* (N) if SIDE = 'L' */ 00101 /* or (M) if SIDE = 'R' */ 00102 00103 /* ===================================================================== */ 00104 00105 /* .. Parameters .. */ 00106 /* .. */ 00107 /* .. Local Scalars .. */ 00108 /* .. */ 00109 /* .. External Subroutines .. */ 00110 /* .. */ 00111 /* .. External Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 00115 /* Parameter adjustments */ 00116 --v; 00117 c_dim1 = *ldc; 00118 c_offset = 1 + c_dim1; 00119 c__ -= c_offset; 00120 --work; 00121 00122 /* Function Body */ 00123 applyleft = lsame_(side, "L"); 00124 lastv = 0; 00125 lastc = 0; 00126 if (*tau != 0.) { 00127 /* Set up variables for scanning V. LASTV begins pointing to the end */ 00128 /* of V. */ 00129 if (applyleft) { 00130 lastv = *m; 00131 } else { 00132 lastv = *n; 00133 } 00134 if (*incv > 0) { 00135 i__ = (lastv - 1) * *incv + 1; 00136 } else { 00137 i__ = 1; 00138 } 00139 /* Look for the last non-zero row in V. */ 00140 while(lastv > 0 && v[i__] == 0.) { 00141 --lastv; 00142 i__ -= *incv; 00143 } 00144 if (applyleft) { 00145 /* Scan for the last non-zero column in C(1:lastv,:). */ 00146 lastc = iladlc_(&lastv, n, &c__[c_offset], ldc); 00147 } else { 00148 /* Scan for the last non-zero row in C(:,1:lastv). */ 00149 lastc = iladlr_(m, &lastv, &c__[c_offset], ldc); 00150 } 00151 } 00152 /* Note that lastc.eq.0 renders the BLAS operations null; no special */ 00153 /* case is needed at this level. */ 00154 if (applyleft) { 00155 00156 /* Form H * C */ 00157 00158 if (lastv > 0) { 00159 00160 /* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */ 00161 00162 dgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, & 00163 v[1], incv, &c_b5, &work[1], &c__1); 00164 00165 /* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */ 00166 00167 d__1 = -(*tau); 00168 dger_(&lastv, &lastc, &d__1, &v[1], incv, &work[1], &c__1, &c__[ 00169 c_offset], ldc); 00170 } 00171 } else { 00172 00173 /* Form C * H */ 00174 00175 if (lastv > 0) { 00176 00177 /* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */ 00178 00179 dgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc, 00180 &v[1], incv, &c_b5, &work[1], &c__1); 00181 00182 /* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */ 00183 00184 d__1 = -(*tau); 00185 dger_(&lastc, &lastv, &d__1, &work[1], &c__1, &v[1], incv, &c__[ 00186 c_offset], ldc); 00187 } 00188 } 00189 return 0; 00190 00191 /* End of DLARF */ 00192 00193 } /* dlarf_ */