dlaqp2.c
Go to the documentation of this file.
00001 /* dlaqp2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int dlaqp2_(integer *m, integer *n, integer *offset, 
00021         doublereal *a, integer *lda, integer *jpvt, doublereal *tau, 
00022         doublereal *vn1, doublereal *vn2, doublereal *work)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, i__1, i__2, i__3;
00026     doublereal d__1, d__2;
00027 
00028     /* Builtin functions */
00029     double sqrt(doublereal);
00030 
00031     /* Local variables */
00032     integer i__, j, mn;
00033     doublereal aii;
00034     integer pvt;
00035     doublereal temp;
00036     extern doublereal dnrm2_(integer *, doublereal *, integer *);
00037     doublereal temp2, tol3z;
00038     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
00039             doublereal *, integer *, doublereal *, doublereal *, integer *, 
00040             doublereal *);
00041     integer offpi, itemp;
00042     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
00043             doublereal *, integer *);
00044     extern doublereal dlamch_(char *);
00045     extern integer idamax_(integer *, doublereal *, integer *);
00046     extern /* Subroutine */ int dlarfp_(integer *, doublereal *, doublereal *, 
00047              integer *, doublereal *);
00048 
00049 
00050 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00051 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00052 /*     November 2006 */
00053 
00054 /*     .. Scalar Arguments .. */
00055 /*     .. */
00056 /*     .. Array Arguments .. */
00057 /*     .. */
00058 
00059 /*  Purpose */
00060 /*  ======= */
00061 
00062 /*  DLAQP2 computes a QR factorization with column pivoting of */
00063 /*  the block A(OFFSET+1:M,1:N). */
00064 /*  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
00065 
00066 /*  Arguments */
00067 /*  ========= */
00068 
00069 /*  M       (input) INTEGER */
00070 /*          The number of rows of the matrix A. M >= 0. */
00071 
00072 /*  N       (input) INTEGER */
00073 /*          The number of columns of the matrix A. N >= 0. */
00074 
00075 /*  OFFSET  (input) INTEGER */
00076 /*          The number of rows of the matrix A that must be pivoted */
00077 /*          but no factorized. OFFSET >= 0. */
00078 
00079 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
00080 /*          On entry, the M-by-N matrix A. */
00081 /*          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is */
00082 /*          the triangular factor obtained; the elements in block */
00083 /*          A(OFFSET+1:M,1:N) below the diagonal, together with the */
00084 /*          array TAU, represent the orthogonal matrix Q as a product of */
00085 /*          elementary reflectors. Block A(1:OFFSET,1:N) has been */
00086 /*          accordingly pivoted, but no factorized. */
00087 
00088 /*  LDA     (input) INTEGER */
00089 /*          The leading dimension of the array A. LDA >= max(1,M). */
00090 
00091 /*  JPVT    (input/output) INTEGER array, dimension (N) */
00092 /*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
00093 /*          to the front of A*P (a leading column); if JPVT(i) = 0, */
00094 /*          the i-th column of A is a free column. */
00095 /*          On exit, if JPVT(i) = k, then the i-th column of A*P */
00096 /*          was the k-th column of A. */
00097 
00098 /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
00099 /*          The scalar factors of the elementary reflectors. */
00100 
00101 /*  VN1     (input/output) DOUBLE PRECISION array, dimension (N) */
00102 /*          The vector with the partial column norms. */
00103 
00104 /*  VN2     (input/output) DOUBLE PRECISION array, dimension (N) */
00105 /*          The vector with the exact column norms. */
00106 
00107 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
00108 
00109 /*  Further Details */
00110 /*  =============== */
00111 
00112 /*  Based on contributions by */
00113 /*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
00114 /*    X. Sun, Computer Science Dept., Duke University, USA */
00115 
00116 /*  Partial column norm updating strategy modified by */
00117 /*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
00118 /*    University of Zagreb, Croatia. */
00119 /*    June 2006. */
00120 /*  For more details see LAPACK Working Note 176. */
00121 /*  ===================================================================== */
00122 
00123 /*     .. Parameters .. */
00124 /*     .. */
00125 /*     .. Local Scalars .. */
00126 /*     .. */
00127 /*     .. External Subroutines .. */
00128 /*     .. */
00129 /*     .. Intrinsic Functions .. */
00130 /*     .. */
00131 /*     .. External Functions .. */
00132 /*     .. */
00133 /*     .. Executable Statements .. */
00134 
00135     /* Parameter adjustments */
00136     a_dim1 = *lda;
00137     a_offset = 1 + a_dim1;
00138     a -= a_offset;
00139     --jpvt;
00140     --tau;
00141     --vn1;
00142     --vn2;
00143     --work;
00144 
00145     /* Function Body */
00146 /* Computing MIN */
00147     i__1 = *m - *offset;
00148     mn = min(i__1,*n);
00149     tol3z = sqrt(dlamch_("Epsilon"));
00150 
00151 /*     Compute factorization. */
00152 
00153     i__1 = mn;
00154     for (i__ = 1; i__ <= i__1; ++i__) {
00155 
00156         offpi = *offset + i__;
00157 
00158 /*        Determine ith pivot column and swap if necessary. */
00159 
00160         i__2 = *n - i__ + 1;
00161         pvt = i__ - 1 + idamax_(&i__2, &vn1[i__], &c__1);
00162 
00163         if (pvt != i__) {
00164             dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
00165                     c__1);
00166             itemp = jpvt[pvt];
00167             jpvt[pvt] = jpvt[i__];
00168             jpvt[i__] = itemp;
00169             vn1[pvt] = vn1[i__];
00170             vn2[pvt] = vn2[i__];
00171         }
00172 
00173 /*        Generate elementary reflector H(i). */
00174 
00175         if (offpi < *m) {
00176             i__2 = *m - offpi + 1;
00177             dlarfp_(&i__2, &a[offpi + i__ * a_dim1], &a[offpi + 1 + i__ * 
00178                     a_dim1], &c__1, &tau[i__]);
00179         } else {
00180             dlarfp_(&c__1, &a[*m + i__ * a_dim1], &a[*m + i__ * a_dim1], &
00181                     c__1, &tau[i__]);
00182         }
00183 
00184         if (i__ <= *n) {
00185 
00186 /*           Apply H(i)' to A(offset+i:m,i+1:n) from the left. */
00187 
00188             aii = a[offpi + i__ * a_dim1];
00189             a[offpi + i__ * a_dim1] = 1.;
00190             i__2 = *m - offpi + 1;
00191             i__3 = *n - i__;
00192             dlarf_("Left", &i__2, &i__3, &a[offpi + i__ * a_dim1], &c__1, &
00193                     tau[i__], &a[offpi + (i__ + 1) * a_dim1], lda, &work[1]);
00194             a[offpi + i__ * a_dim1] = aii;
00195         }
00196 
00197 /*        Update partial column norms. */
00198 
00199         i__2 = *n;
00200         for (j = i__ + 1; j <= i__2; ++j) {
00201             if (vn1[j] != 0.) {
00202 
00203 /*              NOTE: The following 4 lines follow from the analysis in */
00204 /*              Lapack Working Note 176. */
00205 
00206 /* Computing 2nd power */
00207                 d__2 = (d__1 = a[offpi + j * a_dim1], abs(d__1)) / vn1[j];
00208                 temp = 1. - d__2 * d__2;
00209                 temp = max(temp,0.);
00210 /* Computing 2nd power */
00211                 d__1 = vn1[j] / vn2[j];
00212                 temp2 = temp * (d__1 * d__1);
00213                 if (temp2 <= tol3z) {
00214                     if (offpi < *m) {
00215                         i__3 = *m - offpi;
00216                         vn1[j] = dnrm2_(&i__3, &a[offpi + 1 + j * a_dim1], &
00217                                 c__1);
00218                         vn2[j] = vn1[j];
00219                     } else {
00220                         vn1[j] = 0.;
00221                         vn2[j] = 0.;
00222                     }
00223                 } else {
00224                     vn1[j] *= sqrt(temp);
00225                 }
00226             }
00227 /* L10: */
00228         }
00229 
00230 /* L20: */
00231     }
00232 
00233     return 0;
00234 
00235 /*     End of DLAQP2 */
00236 
00237 } /* dlaqp2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46