00001 /* dlaneg.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 integer dlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal * 00017 sigma, doublereal *pivmin, integer *r__) 00018 { 00019 /* System generated locals */ 00020 integer ret_val, i__1, i__2, i__3, i__4; 00021 00022 /* Local variables */ 00023 integer j; 00024 doublereal p, t; 00025 integer bj; 00026 doublereal tmp; 00027 integer neg1, neg2; 00028 doublereal bsav, gamma, dplus; 00029 extern logical disnan_(doublereal *); 00030 integer negcnt; 00031 logical sawnan; 00032 doublereal dminus; 00033 00034 00035 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* DLANEG computes the Sturm count, the number of negative pivots */ 00048 /* encountered while factoring tridiagonal T - sigma I = L D L^T. */ 00049 /* This implementation works directly on the factors without forming */ 00050 /* the tridiagonal matrix T. The Sturm count is also the number of */ 00051 /* eigenvalues of T less than sigma. */ 00052 00053 /* This routine is called from DLARRB. */ 00054 00055 /* The current routine does not use the PIVMIN parameter but rather */ 00056 /* requires IEEE-754 propagation of Infinities and NaNs. This */ 00057 /* routine also has no input range restrictions but does require */ 00058 /* default exception handling such that x/0 produces Inf when x is */ 00059 /* non-zero, and Inf/Inf produces NaN. For more information, see: */ 00060 00061 /* Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in */ 00062 /* Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on */ 00063 /* Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 */ 00064 /* (Tech report version in LAWN 172 with the same title.) */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* N (input) INTEGER */ 00070 /* The order of the matrix. */ 00071 00072 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00073 /* The N diagonal elements of the diagonal matrix D. */ 00074 00075 /* LLD (input) DOUBLE PRECISION array, dimension (N-1) */ 00076 /* The (N-1) elements L(i)*L(i)*D(i). */ 00077 00078 /* SIGMA (input) DOUBLE PRECISION */ 00079 /* Shift amount in T - sigma I = L D L^T. */ 00080 00081 /* PIVMIN (input) DOUBLE PRECISION */ 00082 /* The minimum pivot in the Sturm sequence. May be used */ 00083 /* when zero pivots are encountered on non-IEEE-754 */ 00084 /* architectures. */ 00085 00086 /* R (input) INTEGER */ 00087 /* The twist index for the twisted factorization that is used */ 00088 /* for the negcount. */ 00089 00090 /* Further Details */ 00091 /* =============== */ 00092 00093 /* Based on contributions by */ 00094 /* Osni Marques, LBNL/NERSC, USA */ 00095 /* Christof Voemel, University of California, Berkeley, USA */ 00096 /* Jason Riedy, University of California, Berkeley, USA */ 00097 00098 /* ===================================================================== */ 00099 00100 /* .. Parameters .. */ 00101 /* Some architectures propagate Infinities and NaNs very slowly, so */ 00102 /* the code computes counts in BLKLEN chunks. Then a NaN can */ 00103 /* propagate at most BLKLEN columns before being detected. This is */ 00104 /* not a general tuning parameter; it needs only to be just large */ 00105 /* enough that the overhead is tiny in common cases. */ 00106 /* .. */ 00107 /* .. Local Scalars .. */ 00108 /* .. */ 00109 /* .. Intrinsic Functions .. */ 00110 /* .. */ 00111 /* .. External Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 /* Parameter adjustments */ 00115 --lld; 00116 --d__; 00117 00118 /* Function Body */ 00119 negcnt = 0; 00120 /* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */ 00121 t = -(*sigma); 00122 i__1 = *r__ - 1; 00123 for (bj = 1; bj <= i__1; bj += 128) { 00124 neg1 = 0; 00125 bsav = t; 00126 /* Computing MIN */ 00127 i__3 = bj + 127, i__4 = *r__ - 1; 00128 i__2 = min(i__3,i__4); 00129 for (j = bj; j <= i__2; ++j) { 00130 dplus = d__[j] + t; 00131 if (dplus < 0.) { 00132 ++neg1; 00133 } 00134 tmp = t / dplus; 00135 t = tmp * lld[j] - *sigma; 00136 /* L21: */ 00137 } 00138 sawnan = disnan_(&t); 00139 /* Run a slower version of the above loop if a NaN is detected. */ 00140 /* A NaN should occur only with a zero pivot after an infinite */ 00141 /* pivot. In that case, substituting 1 for T/DPLUS is the */ 00142 /* correct limit. */ 00143 if (sawnan) { 00144 neg1 = 0; 00145 t = bsav; 00146 /* Computing MIN */ 00147 i__3 = bj + 127, i__4 = *r__ - 1; 00148 i__2 = min(i__3,i__4); 00149 for (j = bj; j <= i__2; ++j) { 00150 dplus = d__[j] + t; 00151 if (dplus < 0.) { 00152 ++neg1; 00153 } 00154 tmp = t / dplus; 00155 if (disnan_(&tmp)) { 00156 tmp = 1.; 00157 } 00158 t = tmp * lld[j] - *sigma; 00159 /* L22: */ 00160 } 00161 } 00162 negcnt += neg1; 00163 /* L210: */ 00164 } 00165 00166 /* II) lower part: L D L^T - SIGMA I = U- D- U-^T */ 00167 p = d__[*n] - *sigma; 00168 i__1 = *r__; 00169 for (bj = *n - 1; bj >= i__1; bj += -128) { 00170 neg2 = 0; 00171 bsav = p; 00172 /* Computing MAX */ 00173 i__3 = bj - 127; 00174 i__2 = max(i__3,*r__); 00175 for (j = bj; j >= i__2; --j) { 00176 dminus = lld[j] + p; 00177 if (dminus < 0.) { 00178 ++neg2; 00179 } 00180 tmp = p / dminus; 00181 p = tmp * d__[j] - *sigma; 00182 /* L23: */ 00183 } 00184 sawnan = disnan_(&p); 00185 /* As above, run a slower version that substitutes 1 for Inf/Inf. */ 00186 00187 if (sawnan) { 00188 neg2 = 0; 00189 p = bsav; 00190 /* Computing MAX */ 00191 i__3 = bj - 127; 00192 i__2 = max(i__3,*r__); 00193 for (j = bj; j >= i__2; --j) { 00194 dminus = lld[j] + p; 00195 if (dminus < 0.) { 00196 ++neg2; 00197 } 00198 tmp = p / dminus; 00199 if (disnan_(&tmp)) { 00200 tmp = 1.; 00201 } 00202 p = tmp * d__[j] - *sigma; 00203 /* L24: */ 00204 } 00205 } 00206 negcnt += neg2; 00207 /* L230: */ 00208 } 00209 00210 /* III) Twist index */ 00211 /* T was shifted by SIGMA initially. */ 00212 gamma = t + *sigma + p; 00213 if (gamma < 0.) { 00214 ++negcnt; 00215 } 00216 ret_val = negcnt; 00217 return ret_val; 00218 } /* dlaneg_ */