dlagtf.c
Go to the documentation of this file.
00001 /* dlagtf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dlagtf_(integer *n, doublereal *a, doublereal *lambda, 
00017         doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__, 
00018         integer *in, integer *info)
00019 {
00020     /* System generated locals */
00021     integer i__1;
00022     doublereal d__1, d__2;
00023 
00024     /* Local variables */
00025     integer k;
00026     doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2;
00027     extern doublereal dlamch_(char *);
00028     extern /* Subroutine */ int xerbla_(char *, integer *);
00029 
00030 
00031 /*  -- LAPACK routine (version 3.2) -- */
00032 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00033 /*     November 2006 */
00034 
00035 /*     .. Scalar Arguments .. */
00036 /*     .. */
00037 /*     .. Array Arguments .. */
00038 /*     .. */
00039 
00040 /*  Purpose */
00041 /*  ======= */
00042 
00043 /*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */
00044 /*  tridiagonal matrix and lambda is a scalar, as */
00045 
00046 /*     T - lambda*I = PLU, */
00047 
00048 /*  where P is a permutation matrix, L is a unit lower tridiagonal matrix */
00049 /*  with at most one non-zero sub-diagonal elements per column and U is */
00050 /*  an upper triangular matrix with at most two non-zero super-diagonal */
00051 /*  elements per column. */
00052 
00053 /*  The factorization is obtained by Gaussian elimination with partial */
00054 /*  pivoting and implicit row scaling. */
00055 
00056 /*  The parameter LAMBDA is included in the routine so that DLAGTF may */
00057 /*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by */
00058 /*  inverse iteration. */
00059 
00060 /*  Arguments */
00061 /*  ========= */
00062 
00063 /*  N       (input) INTEGER */
00064 /*          The order of the matrix T. */
00065 
00066 /*  A       (input/output) DOUBLE PRECISION array, dimension (N) */
00067 /*          On entry, A must contain the diagonal elements of T. */
00068 
00069 /*          On exit, A is overwritten by the n diagonal elements of the */
00070 /*          upper triangular matrix U of the factorization of T. */
00071 
00072 /*  LAMBDA  (input) DOUBLE PRECISION */
00073 /*          On entry, the scalar lambda. */
00074 
00075 /*  B       (input/output) DOUBLE PRECISION array, dimension (N-1) */
00076 /*          On entry, B must contain the (n-1) super-diagonal elements of */
00077 /*          T. */
00078 
00079 /*          On exit, B is overwritten by the (n-1) super-diagonal */
00080 /*          elements of the matrix U of the factorization of T. */
00081 
00082 /*  C       (input/output) DOUBLE PRECISION array, dimension (N-1) */
00083 /*          On entry, C must contain the (n-1) sub-diagonal elements of */
00084 /*          T. */
00085 
00086 /*          On exit, C is overwritten by the (n-1) sub-diagonal elements */
00087 /*          of the matrix L of the factorization of T. */
00088 
00089 /*  TOL     (input) DOUBLE PRECISION */
00090 /*          On entry, a relative tolerance used to indicate whether or */
00091 /*          not the matrix (T - lambda*I) is nearly singular. TOL should */
00092 /*          normally be chose as approximately the largest relative error */
00093 /*          in the elements of T. For example, if the elements of T are */
00094 /*          correct to about 4 significant figures, then TOL should be */
00095 /*          set to about 5*10**(-4). If TOL is supplied as less than eps, */
00096 /*          where eps is the relative machine precision, then the value */
00097 /*          eps is used in place of TOL. */
00098 
00099 /*  D       (output) DOUBLE PRECISION array, dimension (N-2) */
00100 /*          On exit, D is overwritten by the (n-2) second super-diagonal */
00101 /*          elements of the matrix U of the factorization of T. */
00102 
00103 /*  IN      (output) INTEGER array, dimension (N) */
00104 /*          On exit, IN contains details of the permutation matrix P. If */
00105 /*          an interchange occurred at the kth step of the elimination, */
00106 /*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */
00107 /*          returns the smallest positive integer j such that */
00108 
00109 /*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */
00110 
00111 /*          where norm( A(j) ) denotes the sum of the absolute values of */
00112 /*          the jth row of the matrix A. If no such j exists then IN(n) */
00113 /*          is returned as zero. If IN(n) is returned as positive, then a */
00114 /*          diagonal element of U is small, indicating that */
00115 /*          (T - lambda*I) is singular or nearly singular, */
00116 
00117 /*  INFO    (output) INTEGER */
00118 /*          = 0   : successful exit */
00119 /*          .lt. 0: if INFO = -k, the kth argument had an illegal value */
00120 
00121 /* ===================================================================== */
00122 
00123 /*     .. Parameters .. */
00124 /*     .. */
00125 /*     .. Local Scalars .. */
00126 /*     .. */
00127 /*     .. Intrinsic Functions .. */
00128 /*     .. */
00129 /*     .. External Functions .. */
00130 /*     .. */
00131 /*     .. External Subroutines .. */
00132 /*     .. */
00133 /*     .. Executable Statements .. */
00134 
00135     /* Parameter adjustments */
00136     --in;
00137     --d__;
00138     --c__;
00139     --b;
00140     --a;
00141 
00142     /* Function Body */
00143     *info = 0;
00144     if (*n < 0) {
00145         *info = -1;
00146         i__1 = -(*info);
00147         xerbla_("DLAGTF", &i__1);
00148         return 0;
00149     }
00150 
00151     if (*n == 0) {
00152         return 0;
00153     }
00154 
00155     a[1] -= *lambda;
00156     in[*n] = 0;
00157     if (*n == 1) {
00158         if (a[1] == 0.) {
00159             in[1] = 1;
00160         }
00161         return 0;
00162     }
00163 
00164     eps = dlamch_("Epsilon");
00165 
00166     tl = max(*tol,eps);
00167     scale1 = abs(a[1]) + abs(b[1]);
00168     i__1 = *n - 1;
00169     for (k = 1; k <= i__1; ++k) {
00170         a[k + 1] -= *lambda;
00171         scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2));
00172         if (k < *n - 1) {
00173             scale2 += (d__1 = b[k + 1], abs(d__1));
00174         }
00175         if (a[k] == 0.) {
00176             piv1 = 0.;
00177         } else {
00178             piv1 = (d__1 = a[k], abs(d__1)) / scale1;
00179         }
00180         if (c__[k] == 0.) {
00181             in[k] = 0;
00182             piv2 = 0.;
00183             scale1 = scale2;
00184             if (k < *n - 1) {
00185                 d__[k] = 0.;
00186             }
00187         } else {
00188             piv2 = (d__1 = c__[k], abs(d__1)) / scale2;
00189             if (piv2 <= piv1) {
00190                 in[k] = 0;
00191                 scale1 = scale2;
00192                 c__[k] /= a[k];
00193                 a[k + 1] -= c__[k] * b[k];
00194                 if (k < *n - 1) {
00195                     d__[k] = 0.;
00196                 }
00197             } else {
00198                 in[k] = 1;
00199                 mult = a[k] / c__[k];
00200                 a[k] = c__[k];
00201                 temp = a[k + 1];
00202                 a[k + 1] = b[k] - mult * temp;
00203                 if (k < *n - 1) {
00204                     d__[k] = b[k + 1];
00205                     b[k + 1] = -mult * d__[k];
00206                 }
00207                 b[k] = temp;
00208                 c__[k] = mult;
00209             }
00210         }
00211         if (max(piv1,piv2) <= tl && in[*n] == 0) {
00212             in[*n] = k;
00213         }
00214 /* L10: */
00215     }
00216     if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) {
00217         in[*n] = *n;
00218     }
00219 
00220     return 0;
00221 
00222 /*     End of DLAGTF */
00223 
00224 } /* dlagtf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46