00001 /* dlaed7.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__2 = 2; 00019 static integer c__1 = 1; 00020 static doublereal c_b10 = 1.; 00021 static doublereal c_b11 = 0.; 00022 static integer c_n1 = -1; 00023 00024 /* Subroutine */ int dlaed7_(integer *icompq, integer *n, integer *qsiz, 00025 integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__, 00026 doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer 00027 *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer * 00028 perm, integer *givptr, integer *givcol, doublereal *givnum, 00029 doublereal *work, integer *iwork, integer *info) 00030 { 00031 /* System generated locals */ 00032 integer q_dim1, q_offset, i__1, i__2; 00033 00034 /* Builtin functions */ 00035 integer pow_ii(integer *, integer *); 00036 00037 /* Local variables */ 00038 integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr; 00039 extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 00040 integer *, doublereal *, doublereal *, integer *, doublereal *, 00041 integer *, doublereal *, doublereal *, integer *); 00042 integer indxc, indxp; 00043 extern /* Subroutine */ int dlaed8_(integer *, integer *, integer *, 00044 integer *, doublereal *, doublereal *, integer *, integer *, 00045 doublereal *, integer *, doublereal *, doublereal *, doublereal *, 00046 integer *, doublereal *, integer *, integer *, integer *, 00047 doublereal *, integer *, integer *, integer *), dlaed9_(integer *, 00048 integer *, integer *, integer *, doublereal *, doublereal *, 00049 integer *, doublereal *, doublereal *, doublereal *, doublereal *, 00050 integer *, integer *), dlaeda_(integer *, integer *, integer *, 00051 integer *, integer *, integer *, integer *, integer *, doublereal 00052 *, doublereal *, integer *, doublereal *, doublereal *, integer *) 00053 ; 00054 integer idlmda; 00055 extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 00056 integer *, integer *, integer *), xerbla_(char *, integer *); 00057 integer coltyp; 00058 00059 00060 /* -- LAPACK routine (version 3.2) -- */ 00061 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00062 /* November 2006 */ 00063 00064 /* .. Scalar Arguments .. */ 00065 /* .. */ 00066 /* .. Array Arguments .. */ 00067 /* .. */ 00068 00069 /* Purpose */ 00070 /* ======= */ 00071 00072 /* DLAED7 computes the updated eigensystem of a diagonal */ 00073 /* matrix after modification by a rank-one symmetric matrix. This */ 00074 /* routine is used only for the eigenproblem which requires all */ 00075 /* eigenvalues and optionally eigenvectors of a dense symmetric matrix */ 00076 /* that has been reduced to tridiagonal form. DLAED1 handles */ 00077 /* the case in which all eigenvalues and eigenvectors of a symmetric */ 00078 /* tridiagonal matrix are desired. */ 00079 00080 /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ 00081 00082 /* where Z = Q'u, u is a vector of length N with ones in the */ 00083 /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ 00084 00085 /* The eigenvectors of the original matrix are stored in Q, and the */ 00086 /* eigenvalues are in D. The algorithm consists of three stages: */ 00087 00088 /* The first stage consists of deflating the size of the problem */ 00089 /* when there are multiple eigenvalues or if there is a zero in */ 00090 /* the Z vector. For each such occurence the dimension of the */ 00091 /* secular equation problem is reduced by one. This stage is */ 00092 /* performed by the routine DLAED8. */ 00093 00094 /* The second stage consists of calculating the updated */ 00095 /* eigenvalues. This is done by finding the roots of the secular */ 00096 /* equation via the routine DLAED4 (as called by DLAED9). */ 00097 /* This routine also calculates the eigenvectors of the current */ 00098 /* problem. */ 00099 00100 /* The final stage consists of computing the updated eigenvectors */ 00101 /* directly using the updated eigenvalues. The eigenvectors for */ 00102 /* the current problem are multiplied with the eigenvectors from */ 00103 /* the overall problem. */ 00104 00105 /* Arguments */ 00106 /* ========= */ 00107 00108 /* ICOMPQ (input) INTEGER */ 00109 /* = 0: Compute eigenvalues only. */ 00110 /* = 1: Compute eigenvectors of original dense symmetric matrix */ 00111 /* also. On entry, Q contains the orthogonal matrix used */ 00112 /* to reduce the original matrix to tridiagonal form. */ 00113 00114 /* N (input) INTEGER */ 00115 /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ 00116 00117 /* QSIZ (input) INTEGER */ 00118 /* The dimension of the orthogonal matrix used to reduce */ 00119 /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ 00120 00121 /* TLVLS (input) INTEGER */ 00122 /* The total number of merging levels in the overall divide and */ 00123 /* conquer tree. */ 00124 00125 /* CURLVL (input) INTEGER */ 00126 /* The current level in the overall merge routine, */ 00127 /* 0 <= CURLVL <= TLVLS. */ 00128 00129 /* CURPBM (input) INTEGER */ 00130 /* The current problem in the current level in the overall */ 00131 /* merge routine (counting from upper left to lower right). */ 00132 00133 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00134 /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ 00135 /* On exit, the eigenvalues of the repaired matrix. */ 00136 00137 /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */ 00138 /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ 00139 /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ 00140 00141 /* LDQ (input) INTEGER */ 00142 /* The leading dimension of the array Q. LDQ >= max(1,N). */ 00143 00144 /* INDXQ (output) INTEGER array, dimension (N) */ 00145 /* The permutation which will reintegrate the subproblem just */ 00146 /* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */ 00147 /* will be in ascending order. */ 00148 00149 /* RHO (input) DOUBLE PRECISION */ 00150 /* The subdiagonal element used to create the rank-1 */ 00151 /* modification. */ 00152 00153 /* CUTPNT (input) INTEGER */ 00154 /* Contains the location of the last eigenvalue in the leading */ 00155 /* sub-matrix. min(1,N) <= CUTPNT <= N. */ 00156 00157 /* QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1) */ 00158 /* Stores eigenvectors of submatrices encountered during */ 00159 /* divide and conquer, packed together. QPTR points to */ 00160 /* beginning of the submatrices. */ 00161 00162 /* QPTR (input/output) INTEGER array, dimension (N+2) */ 00163 /* List of indices pointing to beginning of submatrices stored */ 00164 /* in QSTORE. The submatrices are numbered starting at the */ 00165 /* bottom left of the divide and conquer tree, from left to */ 00166 /* right and bottom to top. */ 00167 00168 /* PRMPTR (input) INTEGER array, dimension (N lg N) */ 00169 /* Contains a list of pointers which indicate where in PERM a */ 00170 /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ 00171 /* indicates the size of the permutation and also the size of */ 00172 /* the full, non-deflated problem. */ 00173 00174 /* PERM (input) INTEGER array, dimension (N lg N) */ 00175 /* Contains the permutations (from deflation and sorting) to be */ 00176 /* applied to each eigenblock. */ 00177 00178 /* GIVPTR (input) INTEGER array, dimension (N lg N) */ 00179 /* Contains a list of pointers which indicate where in GIVCOL a */ 00180 /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ 00181 /* indicates the number of Givens rotations. */ 00182 00183 /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ 00184 /* Each pair of numbers indicates a pair of columns to take place */ 00185 /* in a Givens rotation. */ 00186 00187 /* GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */ 00188 /* Each number indicates the S value to be used in the */ 00189 /* corresponding Givens rotation. */ 00190 00191 /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N) */ 00192 00193 /* IWORK (workspace) INTEGER array, dimension (4*N) */ 00194 00195 /* INFO (output) INTEGER */ 00196 /* = 0: successful exit. */ 00197 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00198 /* > 0: if INFO = 1, an eigenvalue did not converge */ 00199 00200 /* Further Details */ 00201 /* =============== */ 00202 00203 /* Based on contributions by */ 00204 /* Jeff Rutter, Computer Science Division, University of California */ 00205 /* at Berkeley, USA */ 00206 00207 /* ===================================================================== */ 00208 00209 /* .. Parameters .. */ 00210 /* .. */ 00211 /* .. Local Scalars .. */ 00212 /* .. */ 00213 /* .. External Subroutines .. */ 00214 /* .. */ 00215 /* .. Intrinsic Functions .. */ 00216 /* .. */ 00217 /* .. Executable Statements .. */ 00218 00219 /* Test the input parameters. */ 00220 00221 /* Parameter adjustments */ 00222 --d__; 00223 q_dim1 = *ldq; 00224 q_offset = 1 + q_dim1; 00225 q -= q_offset; 00226 --indxq; 00227 --qstore; 00228 --qptr; 00229 --prmptr; 00230 --perm; 00231 --givptr; 00232 givcol -= 3; 00233 givnum -= 3; 00234 --work; 00235 --iwork; 00236 00237 /* Function Body */ 00238 *info = 0; 00239 00240 if (*icompq < 0 || *icompq > 1) { 00241 *info = -1; 00242 } else if (*n < 0) { 00243 *info = -2; 00244 } else if (*icompq == 1 && *qsiz < *n) { 00245 *info = -4; 00246 } else if (*ldq < max(1,*n)) { 00247 *info = -9; 00248 } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { 00249 *info = -12; 00250 } 00251 if (*info != 0) { 00252 i__1 = -(*info); 00253 xerbla_("DLAED7", &i__1); 00254 return 0; 00255 } 00256 00257 /* Quick return if possible */ 00258 00259 if (*n == 0) { 00260 return 0; 00261 } 00262 00263 /* The following values are for bookkeeping purposes only. They are */ 00264 /* integer pointers which indicate the portion of the workspace */ 00265 /* used by a particular array in DLAED8 and DLAED9. */ 00266 00267 if (*icompq == 1) { 00268 ldq2 = *qsiz; 00269 } else { 00270 ldq2 = *n; 00271 } 00272 00273 iz = 1; 00274 idlmda = iz + *n; 00275 iw = idlmda + *n; 00276 iq2 = iw + *n; 00277 is = iq2 + *n * ldq2; 00278 00279 indx = 1; 00280 indxc = indx + *n; 00281 coltyp = indxc + *n; 00282 indxp = coltyp + *n; 00283 00284 /* Form the z-vector which consists of the last row of Q_1 and the */ 00285 /* first row of Q_2. */ 00286 00287 ptr = pow_ii(&c__2, tlvls) + 1; 00288 i__1 = *curlvl - 1; 00289 for (i__ = 1; i__ <= i__1; ++i__) { 00290 i__2 = *tlvls - i__; 00291 ptr += pow_ii(&c__2, &i__2); 00292 /* L10: */ 00293 } 00294 curr = ptr + *curpbm; 00295 dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & 00296 givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz 00297 + *n], info); 00298 00299 /* When solving the final problem, we no longer need the stored data, */ 00300 /* so we will overwrite the data from this level onto the previously */ 00301 /* used storage space. */ 00302 00303 if (*curlvl == *tlvls) { 00304 qptr[curr] = 1; 00305 prmptr[curr] = 1; 00306 givptr[curr] = 1; 00307 } 00308 00309 /* Sort and Deflate eigenvalues. */ 00310 00311 dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, 00312 cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & 00313 perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1) 00314 + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[ 00315 indx], info); 00316 prmptr[curr + 1] = prmptr[curr] + *n; 00317 givptr[curr + 1] += givptr[curr]; 00318 00319 /* Solve Secular Equation. */ 00320 00321 if (k != 0) { 00322 dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], 00323 &work[iw], &qstore[qptr[curr]], &k, info); 00324 if (*info != 0) { 00325 goto L30; 00326 } 00327 if (*icompq == 1) { 00328 dgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ 00329 qptr[curr]], &k, &c_b11, &q[q_offset], ldq); 00330 } 00331 /* Computing 2nd power */ 00332 i__1 = k; 00333 qptr[curr + 1] = qptr[curr] + i__1 * i__1; 00334 00335 /* Prepare the INDXQ sorting permutation. */ 00336 00337 n1 = k; 00338 n2 = *n - k; 00339 dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); 00340 } else { 00341 qptr[curr + 1] = qptr[curr]; 00342 i__1 = *n; 00343 for (i__ = 1; i__ <= i__1; ++i__) { 00344 indxq[i__] = i__; 00345 /* L20: */ 00346 } 00347 } 00348 00349 L30: 00350 return 0; 00351 00352 /* End of DLAED7 */ 00353 00354 } /* dlaed7_ */