dlaed3.c
Go to the documentation of this file.
00001 /* dlaed3.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static doublereal c_b22 = 1.;
00020 static doublereal c_b23 = 0.;
00021 
00022 /* Subroutine */ int dlaed3_(integer *k, integer *n, integer *n1, doublereal *
00023         d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda, 
00024          doublereal *q2, integer *indx, integer *ctot, doublereal *w, 
00025         doublereal *s, integer *info)
00026 {
00027     /* System generated locals */
00028     integer q_dim1, q_offset, i__1, i__2;
00029     doublereal d__1;
00030 
00031     /* Builtin functions */
00032     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
00033 
00034     /* Local variables */
00035     integer i__, j, n2, n12, ii, n23, iq2;
00036     doublereal temp;
00037     extern doublereal dnrm2_(integer *, doublereal *, integer *);
00038     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
00039             integer *, doublereal *, doublereal *, integer *, doublereal *, 
00040             integer *, doublereal *, doublereal *, integer *),
00041              dcopy_(integer *, doublereal *, integer *, doublereal *, integer 
00042             *), dlaed4_(integer *, integer *, doublereal *, doublereal *, 
00043             doublereal *, doublereal *, doublereal *, integer *);
00044     extern doublereal dlamc3_(doublereal *, doublereal *);
00045     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00046             doublereal *, integer *, doublereal *, integer *), 
00047             dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
00048             doublereal *, integer *), xerbla_(char *, integer *);
00049 
00050 
00051 /*  -- LAPACK routine (version 3.2) -- */
00052 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00053 /*     November 2006 */
00054 
00055 /*     .. Scalar Arguments .. */
00056 /*     .. */
00057 /*     .. Array Arguments .. */
00058 /*     .. */
00059 
00060 /*  Purpose */
00061 /*  ======= */
00062 
00063 /*  DLAED3 finds the roots of the secular equation, as defined by the */
00064 /*  values in D, W, and RHO, between 1 and K.  It makes the */
00065 /*  appropriate calls to DLAED4 and then updates the eigenvectors by */
00066 /*  multiplying the matrix of eigenvectors of the pair of eigensystems */
00067 /*  being combined by the matrix of eigenvectors of the K-by-K system */
00068 /*  which is solved here. */
00069 
00070 /*  This code makes very mild assumptions about floating point */
00071 /*  arithmetic. It will work on machines with a guard digit in */
00072 /*  add/subtract, or on those binary machines without guard digits */
00073 /*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
00074 /*  It could conceivably fail on hexadecimal or decimal machines */
00075 /*  without guard digits, but we know of none. */
00076 
00077 /*  Arguments */
00078 /*  ========= */
00079 
00080 /*  K       (input) INTEGER */
00081 /*          The number of terms in the rational function to be solved by */
00082 /*          DLAED4.  K >= 0. */
00083 
00084 /*  N       (input) INTEGER */
00085 /*          The number of rows and columns in the Q matrix. */
00086 /*          N >= K (deflation may result in N>K). */
00087 
00088 /*  N1      (input) INTEGER */
00089 /*          The location of the last eigenvalue in the leading submatrix. */
00090 /*          min(1,N) <= N1 <= N/2. */
00091 
00092 /*  D       (output) DOUBLE PRECISION array, dimension (N) */
00093 /*          D(I) contains the updated eigenvalues for */
00094 /*          1 <= I <= K. */
00095 
00096 /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) */
00097 /*          Initially the first K columns are used as workspace. */
00098 /*          On output the columns 1 to K contain */
00099 /*          the updated eigenvectors. */
00100 
00101 /*  LDQ     (input) INTEGER */
00102 /*          The leading dimension of the array Q.  LDQ >= max(1,N). */
00103 
00104 /*  RHO     (input) DOUBLE PRECISION */
00105 /*          The value of the parameter in the rank one update equation. */
00106 /*          RHO >= 0 required. */
00107 
00108 /*  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K) */
00109 /*          The first K elements of this array contain the old roots */
00110 /*          of the deflated updating problem.  These are the poles */
00111 /*          of the secular equation. May be changed on output by */
00112 /*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */
00113 /*          Cray-2, or Cray C-90, as described above. */
00114 
00115 /*  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N) */
00116 /*          The first K columns of this matrix contain the non-deflated */
00117 /*          eigenvectors for the split problem. */
00118 
00119 /*  INDX    (input) INTEGER array, dimension (N) */
00120 /*          The permutation used to arrange the columns of the deflated */
00121 /*          Q matrix into three groups (see DLAED2). */
00122 /*          The rows of the eigenvectors found by DLAED4 must be likewise */
00123 /*          permuted before the matrix multiply can take place. */
00124 
00125 /*  CTOT    (input) INTEGER array, dimension (4) */
00126 /*          A count of the total number of the various types of columns */
00127 /*          in Q, as described in INDX.  The fourth column type is any */
00128 /*          column which has been deflated. */
00129 
00130 /*  W       (input/output) DOUBLE PRECISION array, dimension (K) */
00131 /*          The first K elements of this array contain the components */
00132 /*          of the deflation-adjusted updating vector. Destroyed on */
00133 /*          output. */
00134 
00135 /*  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K */
00136 /*          Will contain the eigenvectors of the repaired matrix which */
00137 /*          will be multiplied by the previously accumulated eigenvectors */
00138 /*          to update the system. */
00139 
00140 /*  LDS     (input) INTEGER */
00141 /*          The leading dimension of S.  LDS >= max(1,K). */
00142 
00143 /*  INFO    (output) INTEGER */
00144 /*          = 0:  successful exit. */
00145 /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
00146 /*          > 0:  if INFO = 1, an eigenvalue did not converge */
00147 
00148 /*  Further Details */
00149 /*  =============== */
00150 
00151 /*  Based on contributions by */
00152 /*     Jeff Rutter, Computer Science Division, University of California */
00153 /*     at Berkeley, USA */
00154 /*  Modified by Francoise Tisseur, University of Tennessee. */
00155 
00156 /*  ===================================================================== */
00157 
00158 /*     .. Parameters .. */
00159 /*     .. */
00160 /*     .. Local Scalars .. */
00161 /*     .. */
00162 /*     .. External Functions .. */
00163 /*     .. */
00164 /*     .. External Subroutines .. */
00165 /*     .. */
00166 /*     .. Intrinsic Functions .. */
00167 /*     .. */
00168 /*     .. Executable Statements .. */
00169 
00170 /*     Test the input parameters. */
00171 
00172     /* Parameter adjustments */
00173     --d__;
00174     q_dim1 = *ldq;
00175     q_offset = 1 + q_dim1;
00176     q -= q_offset;
00177     --dlamda;
00178     --q2;
00179     --indx;
00180     --ctot;
00181     --w;
00182     --s;
00183 
00184     /* Function Body */
00185     *info = 0;
00186 
00187     if (*k < 0) {
00188         *info = -1;
00189     } else if (*n < *k) {
00190         *info = -2;
00191     } else if (*ldq < max(1,*n)) {
00192         *info = -6;
00193     }
00194     if (*info != 0) {
00195         i__1 = -(*info);
00196         xerbla_("DLAED3", &i__1);
00197         return 0;
00198     }
00199 
00200 /*     Quick return if possible */
00201 
00202     if (*k == 0) {
00203         return 0;
00204     }
00205 
00206 /*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
00207 /*     be computed with high relative accuracy (barring over/underflow). */
00208 /*     This is a problem on machines without a guard digit in */
00209 /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
00210 /*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
00211 /*     which on any of these machines zeros out the bottommost */
00212 /*     bit of DLAMDA(I) if it is 1; this makes the subsequent */
00213 /*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
00214 /*     occurs. On binary machines with a guard digit (almost all */
00215 /*     machines) it does not change DLAMDA(I) at all. On hexadecimal */
00216 /*     and decimal machines with a guard digit, it slightly */
00217 /*     changes the bottommost bits of DLAMDA(I). It does not account */
00218 /*     for hexadecimal or decimal machines without guard digits */
00219 /*     (we know of none). We use a subroutine call to compute */
00220 /*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
00221 /*     this code. */
00222 
00223     i__1 = *k;
00224     for (i__ = 1; i__ <= i__1; ++i__) {
00225         dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
00226 /* L10: */
00227     }
00228 
00229     i__1 = *k;
00230     for (j = 1; j <= i__1; ++j) {
00231         dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 
00232                 info);
00233 
00234 /*        If the zero finder fails, the computation is terminated. */
00235 
00236         if (*info != 0) {
00237             goto L120;
00238         }
00239 /* L20: */
00240     }
00241 
00242     if (*k == 1) {
00243         goto L110;
00244     }
00245     if (*k == 2) {
00246         i__1 = *k;
00247         for (j = 1; j <= i__1; ++j) {
00248             w[1] = q[j * q_dim1 + 1];
00249             w[2] = q[j * q_dim1 + 2];
00250             ii = indx[1];
00251             q[j * q_dim1 + 1] = w[ii];
00252             ii = indx[2];
00253             q[j * q_dim1 + 2] = w[ii];
00254 /* L30: */
00255         }
00256         goto L110;
00257     }
00258 
00259 /*     Compute updated W. */
00260 
00261     dcopy_(k, &w[1], &c__1, &s[1], &c__1);
00262 
00263 /*     Initialize W(I) = Q(I,I) */
00264 
00265     i__1 = *ldq + 1;
00266     dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
00267     i__1 = *k;
00268     for (j = 1; j <= i__1; ++j) {
00269         i__2 = j - 1;
00270         for (i__ = 1; i__ <= i__2; ++i__) {
00271             w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
00272 /* L40: */
00273         }
00274         i__2 = *k;
00275         for (i__ = j + 1; i__ <= i__2; ++i__) {
00276             w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
00277 /* L50: */
00278         }
00279 /* L60: */
00280     }
00281     i__1 = *k;
00282     for (i__ = 1; i__ <= i__1; ++i__) {
00283         d__1 = sqrt(-w[i__]);
00284         w[i__] = d_sign(&d__1, &s[i__]);
00285 /* L70: */
00286     }
00287 
00288 /*     Compute eigenvectors of the modified rank-1 modification. */
00289 
00290     i__1 = *k;
00291     for (j = 1; j <= i__1; ++j) {
00292         i__2 = *k;
00293         for (i__ = 1; i__ <= i__2; ++i__) {
00294             s[i__] = w[i__] / q[i__ + j * q_dim1];
00295 /* L80: */
00296         }
00297         temp = dnrm2_(k, &s[1], &c__1);
00298         i__2 = *k;
00299         for (i__ = 1; i__ <= i__2; ++i__) {
00300             ii = indx[i__];
00301             q[i__ + j * q_dim1] = s[ii] / temp;
00302 /* L90: */
00303         }
00304 /* L100: */
00305     }
00306 
00307 /*     Compute the updated eigenvectors. */
00308 
00309 L110:
00310 
00311     n2 = *n - *n1;
00312     n12 = ctot[1] + ctot[2];
00313     n23 = ctot[2] + ctot[3];
00314 
00315     dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);
00316     iq2 = *n1 * n12 + 1;
00317     if (n23 != 0) {
00318         dgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, &
00319                 c_b23, &q[*n1 + 1 + q_dim1], ldq);
00320     } else {
00321         dlaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq);
00322     }
00323 
00324     dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);
00325     if (n12 != 0) {
00326         dgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, 
00327                  &q[q_offset], ldq);
00328     } else {
00329         dlaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq);
00330     }
00331 
00332 
00333 L120:
00334     return 0;
00335 
00336 /*     End of DLAED3 */
00337 
00338 } /* dlaed3_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:46