dla_porpvgrw.c
Go to the documentation of this file.
00001 /* dla_porpvgrw.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 doublereal dla_porpvgrw__(char *uplo, integer *ncols, doublereal *a, integer *
00017         lda, doublereal *af, integer *ldaf, doublereal *work, ftnlen uplo_len)
00018 {
00019     /* System generated locals */
00020     integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
00021     doublereal ret_val, d__1, d__2, d__3;
00022 
00023     /* Local variables */
00024     integer i__, j;
00025     doublereal amax, umax;
00026     extern logical lsame_(char *, char *);
00027     logical upper;
00028     doublereal rpvgrw;
00029 
00030 
00031 /*     -- LAPACK routine (version 3.2.1)                                 -- */
00032 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00033 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00034 /*     -- April 2009                                                   -- */
00035 
00036 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00037 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00038 
00039 /*     .. */
00040 /*     .. Scalar Arguments .. */
00041 /*     .. */
00042 /*     .. Array Arguments .. */
00043 /*     .. */
00044 
00045 /*  Purpose */
00046 /*  ======= */
00047 
00048 /*  DLA_PORPVGRW computes the reciprocal pivot growth factor */
00049 /*  norm(A)/norm(U). The "max absolute element" norm is used. If this is */
00050 /*  much less than 1, the stability of the LU factorization of the */
00051 /*  (equilibrated) matrix A could be poor. This also means that the */
00052 /*  solution X, estimated condition numbers, and error bounds could be */
00053 /*  unreliable. */
00054 
00055 /*  Arguments */
00056 /*  ========= */
00057 
00058 /*     UPLO    (input) CHARACTER*1 */
00059 /*       = 'U':  Upper triangle of A is stored; */
00060 /*       = 'L':  Lower triangle of A is stored. */
00061 
00062 /*     NCOLS   (input) INTEGER */
00063 /*     The number of columns of the matrix A. NCOLS >= 0. */
00064 
00065 /*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00066 /*     On entry, the N-by-N matrix A. */
00067 
00068 /*     LDA     (input) INTEGER */
00069 /*     The leading dimension of the array A.  LDA >= max(1,N). */
00070 
00071 /*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) */
00072 /*     The triangular factor U or L from the Cholesky factorization */
00073 /*     A = U**T*U or A = L*L**T, as computed by DPOTRF. */
00074 
00075 /*     LDAF    (input) INTEGER */
00076 /*     The leading dimension of the array AF.  LDAF >= max(1,N). */
00077 
00078 /*     WORK    (input) DOUBLE PRECISION array, dimension (2*N) */
00079 
00080 /*  ===================================================================== */
00081 
00082 /*     .. Local Scalars .. */
00083 /*     .. */
00084 /*     .. Intrinsic Functions .. */
00085 /*     .. */
00086 /*     .. External Functions .. */
00087 /*     .. */
00088 /*     .. Executable Statements .. */
00089 
00090     /* Parameter adjustments */
00091     a_dim1 = *lda;
00092     a_offset = 1 + a_dim1;
00093     a -= a_offset;
00094     af_dim1 = *ldaf;
00095     af_offset = 1 + af_dim1;
00096     af -= af_offset;
00097     --work;
00098 
00099     /* Function Body */
00100     upper = lsame_("Upper", uplo);
00101 
00102 /*     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so */
00103 /*     we restrict the growth search to that minor and use only the first */
00104 /*     2*NCOLS workspace entries. */
00105 
00106     rpvgrw = 1.;
00107     i__1 = *ncols << 1;
00108     for (i__ = 1; i__ <= i__1; ++i__) {
00109         work[i__] = 0.;
00110     }
00111 
00112 /*     Find the max magnitude entry of each column. */
00113 
00114     if (upper) {
00115         i__1 = *ncols;
00116         for (j = 1; j <= i__1; ++j) {
00117             i__2 = j;
00118             for (i__ = 1; i__ <= i__2; ++i__) {
00119 /* Computing MAX */
00120                 d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
00121                         ncols + j];
00122                 work[*ncols + j] = max(d__2,d__3);
00123             }
00124         }
00125     } else {
00126         i__1 = *ncols;
00127         for (j = 1; j <= i__1; ++j) {
00128             i__2 = *ncols;
00129             for (i__ = j; i__ <= i__2; ++i__) {
00130 /* Computing MAX */
00131                 d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
00132                         ncols + j];
00133                 work[*ncols + j] = max(d__2,d__3);
00134             }
00135         }
00136     }
00137 
00138 /*     Now find the max magnitude entry of each column of the factor in */
00139 /*     AF.  No pivoting, so no permutations. */
00140 
00141     if (lsame_("Upper", uplo)) {
00142         i__1 = *ncols;
00143         for (j = 1; j <= i__1; ++j) {
00144             i__2 = j;
00145             for (i__ = 1; i__ <= i__2; ++i__) {
00146 /* Computing MAX */
00147                 d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[
00148                         j];
00149                 work[j] = max(d__2,d__3);
00150             }
00151         }
00152     } else {
00153         i__1 = *ncols;
00154         for (j = 1; j <= i__1; ++j) {
00155             i__2 = *ncols;
00156             for (i__ = j; i__ <= i__2; ++i__) {
00157 /* Computing MAX */
00158                 d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[
00159                         j];
00160                 work[j] = max(d__2,d__3);
00161             }
00162         }
00163     }
00164 
00165 /*     Compute the *inverse* of the max element growth factor.  Dividing */
00166 /*     by zero would imply the largest entry of the factor's column is */
00167 /*     zero.  Than can happen when either the column of A is zero or */
00168 /*     massive pivots made the factor underflow to zero.  Neither counts */
00169 /*     as growth in itself, so simply ignore terms with zero */
00170 /*     denominators. */
00171 
00172     if (lsame_("Upper", uplo)) {
00173         i__1 = *ncols;
00174         for (i__ = 1; i__ <= i__1; ++i__) {
00175             umax = work[i__];
00176             amax = work[*ncols + i__];
00177             if (umax != 0.) {
00178 /* Computing MIN */
00179                 d__1 = amax / umax;
00180                 rpvgrw = min(d__1,rpvgrw);
00181             }
00182         }
00183     } else {
00184         i__1 = *ncols;
00185         for (i__ = 1; i__ <= i__1; ++i__) {
00186             umax = work[i__];
00187             amax = work[*ncols + i__];
00188             if (umax != 0.) {
00189 /* Computing MIN */
00190                 d__1 = amax / umax;
00191                 rpvgrw = min(d__1,rpvgrw);
00192             }
00193         }
00194     }
00195     ret_val = rpvgrw;
00196     return ret_val;
00197 } /* dla_porpvgrw__ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:45