dla_gbrfsx_extended.c
Go to the documentation of this file.
00001 /* dla_gbrfsx_extended.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static doublereal c_b6 = -1.;
00020 static doublereal c_b8 = 1.;
00021 
00022 /* Subroutine */ int dla_gbrfsx_extended__(integer *prec_type__, integer *
00023         trans_type__, integer *n, integer *kl, integer *ku, integer *nrhs, 
00024         doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb, 
00025         integer *ipiv, logical *colequ, doublereal *c__, doublereal *b, 
00026         integer *ldb, doublereal *y, integer *ldy, doublereal *berr_out__, 
00027         integer *n_norms__, doublereal *err_bnds_norm__, doublereal *
00028         err_bnds_comp__, doublereal *res, doublereal *ayb, doublereal *dy, 
00029         doublereal *y_tail__, doublereal *rcond, integer *ithresh, doublereal 
00030         *rthresh, doublereal *dz_ub__, logical *ignore_cwise__, integer *info)
00031 {
00032     /* System generated locals */
00033     integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
00034             y_dim1, y_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
00035             err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3;
00036     doublereal d__1, d__2;
00037     char ch__1[1];
00038 
00039     /* Local variables */
00040     doublereal dxratmax, dzratmax;
00041     integer i__, j, m;
00042     extern /* Subroutine */ int dla_gbamv__(integer *, integer *, integer *, 
00043             integer *, integer *, doublereal *, doublereal *, integer *, 
00044             doublereal *, integer *, doublereal *, doublereal *, integer *);
00045     logical incr_prec__;
00046     doublereal prev_dz_z__, yk, final_dx_x__;
00047     extern /* Subroutine */ int dla_wwaddw__(integer *, doublereal *, 
00048             doublereal *, doublereal *);
00049     doublereal final_dz_z__, prevnormdx;
00050     integer cnt;
00051     doublereal dyk, eps, incr_thresh__, dx_x__, dz_z__;
00052     extern /* Subroutine */ int dla_lin_berr__(integer *, integer *, integer *
00053             , doublereal *, doublereal *, doublereal *);
00054     doublereal ymin;
00055     extern /* Subroutine */ int blas_dgbmv_x__(integer *, integer *, integer *
00056             , integer *, integer *, doublereal *, doublereal *, integer *, 
00057             doublereal *, integer *, doublereal *, doublereal *, integer *, 
00058             integer *);
00059     integer y_prec_state__;
00060     extern /* Subroutine */ int blas_dgbmv2_x__(integer *, integer *, integer 
00061             *, integer *, integer *, doublereal *, doublereal *, integer *, 
00062             doublereal *, doublereal *, integer *, doublereal *, doublereal *,
00063              integer *, integer *), dgbmv_(char *, integer *, integer *, 
00064             integer *, integer *, doublereal *, doublereal *, integer *, 
00065             doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, 
00066             integer *);
00067     doublereal dxrat, dzrat;
00068     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
00069             integer *, doublereal *, integer *);
00070     char trans[1];
00071     doublereal normx, normy;
00072     extern doublereal dlamch_(char *);
00073     extern /* Subroutine */ int dgbtrs_(char *, integer *, integer *, integer 
00074             *, integer *, doublereal *, integer *, integer *, doublereal *, 
00075             integer *, integer *);
00076     doublereal normdx;
00077     extern /* Character */ VOID chla_transtype__(char *, ftnlen, integer *);
00078     doublereal hugeval;
00079     integer x_state__, z_state__;
00080 
00081 
00082 /*     -- LAPACK routine (version 3.2.1)                                 -- */
00083 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00084 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00085 /*     -- April 2009                                                   -- */
00086 
00087 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00088 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00089 
00090 /*     .. */
00091 /*     .. Scalar Arguments .. */
00092 /*     .. */
00093 /*     .. Array Arguments .. */
00094 /*     .. */
00095 
00096 /*  Purpose */
00097 /*  ======= */
00098 
00099 /*  DLA_GBRFSX_EXTENDED improves the computed solution to a system of */
00100 /*  linear equations by performing extra-precise iterative refinement */
00101 /*  and provides error bounds and backward error estimates for the solution. */
00102 /*  This subroutine is called by DGBRFSX to perform iterative refinement. */
00103 /*  In addition to normwise error bound, the code provides maximum */
00104 /*  componentwise error bound if possible. See comments for ERR_BNDS_NORM */
00105 /*  and ERR_BNDS_COMP for details of the error bounds. Note that this */
00106 /*  subroutine is only resonsible for setting the second fields of */
00107 /*  ERR_BNDS_NORM and ERR_BNDS_COMP. */
00108 
00109 /*  Arguments */
00110 /*  ========= */
00111 
00112 /*     PREC_TYPE      (input) INTEGER */
00113 /*     Specifies the intermediate precision to be used in refinement. */
00114 /*     The value is defined by ILAPREC(P) where P is a CHARACTER and */
00115 /*     P    = 'S':  Single */
00116 /*          = 'D':  Double */
00117 /*          = 'I':  Indigenous */
00118 /*          = 'X', 'E':  Extra */
00119 
00120 /*     TRANS_TYPE     (input) INTEGER */
00121 /*     Specifies the transposition operation on A. */
00122 /*     The value is defined by ILATRANS(T) where T is a CHARACTER and */
00123 /*     T    = 'N':  No transpose */
00124 /*          = 'T':  Transpose */
00125 /*          = 'C':  Conjugate transpose */
00126 
00127 /*     N              (input) INTEGER */
00128 /*     The number of linear equations, i.e., the order of the */
00129 /*     matrix A.  N >= 0. */
00130 
00131 /*     KL             (input) INTEGER */
00132 /*     The number of subdiagonals within the band of A.  KL >= 0. */
00133 
00134 /*     KU             (input) INTEGER */
00135 /*     The number of superdiagonals within the band of A.  KU >= 0 */
00136 
00137 /*     NRHS           (input) INTEGER */
00138 /*     The number of right-hand-sides, i.e., the number of columns of the */
00139 /*     matrix B. */
00140 
00141 /*     A              (input) DOUBLE PRECISION array, dimension (LDA,N) */
00142 /*     On entry, the N-by-N matrix A. */
00143 
00144 /*     LDA            (input) INTEGER */
00145 /*     The leading dimension of the array A.  LDA >= max(1,N). */
00146 
00147 /*     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N) */
00148 /*     The factors L and U from the factorization */
00149 /*     A = P*L*U as computed by DGBTRF. */
00150 
00151 /*     LDAF           (input) INTEGER */
00152 /*     The leading dimension of the array AF.  LDAF >= max(1,N). */
00153 
00154 /*     IPIV           (input) INTEGER array, dimension (N) */
00155 /*     The pivot indices from the factorization A = P*L*U */
00156 /*     as computed by DGBTRF; row i of the matrix was interchanged */
00157 /*     with row IPIV(i). */
00158 
00159 /*     COLEQU         (input) LOGICAL */
00160 /*     If .TRUE. then column equilibration was done to A before calling */
00161 /*     this routine. This is needed to compute the solution and error */
00162 /*     bounds correctly. */
00163 
00164 /*     C              (input) DOUBLE PRECISION array, dimension (N) */
00165 /*     The column scale factors for A. If COLEQU = .FALSE., C */
00166 /*     is not accessed. If C is input, each element of C should be a power */
00167 /*     of the radix to ensure a reliable solution and error estimates. */
00168 /*     Scaling by powers of the radix does not cause rounding errors unless */
00169 /*     the result underflows or overflows. Rounding errors during scaling */
00170 /*     lead to refining with a matrix that is not equivalent to the */
00171 /*     input matrix, producing error estimates that may not be */
00172 /*     reliable. */
00173 
00174 /*     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00175 /*     The right-hand-side matrix B. */
00176 
00177 /*     LDB            (input) INTEGER */
00178 /*     The leading dimension of the array B.  LDB >= max(1,N). */
00179 
00180 /*     Y              (input/output) DOUBLE PRECISION array, dimension */
00181 /*                    (LDY,NRHS) */
00182 /*     On entry, the solution matrix X, as computed by DGBTRS. */
00183 /*     On exit, the improved solution matrix Y. */
00184 
00185 /*     LDY            (input) INTEGER */
00186 /*     The leading dimension of the array Y.  LDY >= max(1,N). */
00187 
00188 /*     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS) */
00189 /*     On exit, BERR_OUT(j) contains the componentwise relative backward */
00190 /*     error for right-hand-side j from the formula */
00191 /*         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
00192 /*     where abs(Z) is the componentwise absolute value of the matrix */
00193 /*     or vector Z. This is computed by DLA_LIN_BERR. */
00194 
00195 /*     N_NORMS        (input) INTEGER */
00196 /*     Determines which error bounds to return (see ERR_BNDS_NORM */
00197 /*     and ERR_BNDS_COMP). */
00198 /*     If N_NORMS >= 1 return normwise error bounds. */
00199 /*     If N_NORMS >= 2 return componentwise error bounds. */
00200 
00201 /*     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension */
00202 /*                    (NRHS, N_ERR_BNDS) */
00203 /*     For each right-hand side, this array contains information about */
00204 /*     various error bounds and condition numbers corresponding to the */
00205 /*     normwise relative error, which is defined as follows: */
00206 
00207 /*     Normwise relative error in the ith solution vector: */
00208 /*             max_j (abs(XTRUE(j,i) - X(j,i))) */
00209 /*            ------------------------------ */
00210 /*                  max_j abs(X(j,i)) */
00211 
00212 /*     The array is indexed by the type of error information as described */
00213 /*     below. There currently are up to three pieces of information */
00214 /*     returned. */
00215 
00216 /*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
00217 /*     right-hand side. */
00218 
00219 /*     The second index in ERR_BNDS_NORM(:,err) contains the following */
00220 /*     three fields: */
00221 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00222 /*              reciprocal condition number is less than the threshold */
00223 /*              sqrt(n) * slamch('Epsilon'). */
00224 
00225 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00226 /*              almost certainly within a factor of 10 of the true error */
00227 /*              so long as the next entry is greater than the threshold */
00228 /*              sqrt(n) * slamch('Epsilon'). This error bound should only */
00229 /*              be trusted if the previous boolean is true. */
00230 
00231 /*     err = 3  Reciprocal condition number: Estimated normwise */
00232 /*              reciprocal condition number.  Compared with the threshold */
00233 /*              sqrt(n) * slamch('Epsilon') to determine if the error */
00234 /*              estimate is "guaranteed". These reciprocal condition */
00235 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00236 /*              appropriately scaled matrix Z. */
00237 /*              Let Z = S*A, where S scales each row by a power of the */
00238 /*              radix so all absolute row sums of Z are approximately 1. */
00239 
00240 /*     This subroutine is only responsible for setting the second field */
00241 /*     above. */
00242 /*     See Lapack Working Note 165 for further details and extra */
00243 /*     cautions. */
00244 
00245 /*     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension */
00246 /*                    (NRHS, N_ERR_BNDS) */
00247 /*     For each right-hand side, this array contains information about */
00248 /*     various error bounds and condition numbers corresponding to the */
00249 /*     componentwise relative error, which is defined as follows: */
00250 
00251 /*     Componentwise relative error in the ith solution vector: */
00252 /*                    abs(XTRUE(j,i) - X(j,i)) */
00253 /*             max_j ---------------------- */
00254 /*                         abs(X(j,i)) */
00255 
00256 /*     The array is indexed by the right-hand side i (on which the */
00257 /*     componentwise relative error depends), and the type of error */
00258 /*     information as described below. There currently are up to three */
00259 /*     pieces of information returned for each right-hand side. If */
00260 /*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
00261 /*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
00262 /*     the first (:,N_ERR_BNDS) entries are returned. */
00263 
00264 /*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
00265 /*     right-hand side. */
00266 
00267 /*     The second index in ERR_BNDS_COMP(:,err) contains the following */
00268 /*     three fields: */
00269 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00270 /*              reciprocal condition number is less than the threshold */
00271 /*              sqrt(n) * slamch('Epsilon'). */
00272 
00273 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00274 /*              almost certainly within a factor of 10 of the true error */
00275 /*              so long as the next entry is greater than the threshold */
00276 /*              sqrt(n) * slamch('Epsilon'). This error bound should only */
00277 /*              be trusted if the previous boolean is true. */
00278 
00279 /*     err = 3  Reciprocal condition number: Estimated componentwise */
00280 /*              reciprocal condition number.  Compared with the threshold */
00281 /*              sqrt(n) * slamch('Epsilon') to determine if the error */
00282 /*              estimate is "guaranteed". These reciprocal condition */
00283 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00284 /*              appropriately scaled matrix Z. */
00285 /*              Let Z = S*(A*diag(x)), where x is the solution for the */
00286 /*              current right-hand side and S scales each row of */
00287 /*              A*diag(x) by a power of the radix so all absolute row */
00288 /*              sums of Z are approximately 1. */
00289 
00290 /*     This subroutine is only responsible for setting the second field */
00291 /*     above. */
00292 /*     See Lapack Working Note 165 for further details and extra */
00293 /*     cautions. */
00294 
00295 /*     RES            (input) DOUBLE PRECISION array, dimension (N) */
00296 /*     Workspace to hold the intermediate residual. */
00297 
00298 /*     AYB            (input) DOUBLE PRECISION array, dimension (N) */
00299 /*     Workspace. This can be the same workspace passed for Y_TAIL. */
00300 
00301 /*     DY             (input) DOUBLE PRECISION array, dimension (N) */
00302 /*     Workspace to hold the intermediate solution. */
00303 
00304 /*     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N) */
00305 /*     Workspace to hold the trailing bits of the intermediate solution. */
00306 
00307 /*     RCOND          (input) DOUBLE PRECISION */
00308 /*     Reciprocal scaled condition number.  This is an estimate of the */
00309 /*     reciprocal Skeel condition number of the matrix A after */
00310 /*     equilibration (if done).  If this is less than the machine */
00311 /*     precision (in particular, if it is zero), the matrix is singular */
00312 /*     to working precision.  Note that the error may still be small even */
00313 /*     if this number is very small and the matrix appears ill- */
00314 /*     conditioned. */
00315 
00316 /*     ITHRESH        (input) INTEGER */
00317 /*     The maximum number of residual computations allowed for */
00318 /*     refinement. The default is 10. For 'aggressive' set to 100 to */
00319 /*     permit convergence using approximate factorizations or */
00320 /*     factorizations other than LU. If the factorization uses a */
00321 /*     technique other than Gaussian elimination, the guarantees in */
00322 /*     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
00323 
00324 /*     RTHRESH        (input) DOUBLE PRECISION */
00325 /*     Determines when to stop refinement if the error estimate stops */
00326 /*     decreasing. Refinement will stop when the next solution no longer */
00327 /*     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
00328 /*     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
00329 /*     default value is 0.5. For 'aggressive' set to 0.9 to permit */
00330 /*     convergence on extremely ill-conditioned matrices. See LAWN 165 */
00331 /*     for more details. */
00332 
00333 /*     DZ_UB          (input) DOUBLE PRECISION */
00334 /*     Determines when to start considering componentwise convergence. */
00335 /*     Componentwise convergence is only considered after each component */
00336 /*     of the solution Y is stable, which we definte as the relative */
00337 /*     change in each component being less than DZ_UB. The default value */
00338 /*     is 0.25, requiring the first bit to be stable. See LAWN 165 for */
00339 /*     more details. */
00340 
00341 /*     IGNORE_CWISE   (input) LOGICAL */
00342 /*     If .TRUE. then ignore componentwise convergence. Default value */
00343 /*     is .FALSE.. */
00344 
00345 /*     INFO           (output) INTEGER */
00346 /*       = 0:  Successful exit. */
00347 /*       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal */
00348 /*             value */
00349 
00350 /*  ===================================================================== */
00351 
00352 /*     .. Local Scalars .. */
00353 /*     .. */
00354 /*     .. Parameters .. */
00355 /*     .. */
00356 /*     .. External Subroutines .. */
00357 /*     .. */
00358 /*     .. Intrinsic Functions .. */
00359 /*     .. */
00360 /*     .. Executable Statements .. */
00361 
00362     /* Parameter adjustments */
00363     err_bnds_comp_dim1 = *nrhs;
00364     err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
00365     err_bnds_comp__ -= err_bnds_comp_offset;
00366     err_bnds_norm_dim1 = *nrhs;
00367     err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
00368     err_bnds_norm__ -= err_bnds_norm_offset;
00369     ab_dim1 = *ldab;
00370     ab_offset = 1 + ab_dim1;
00371     ab -= ab_offset;
00372     afb_dim1 = *ldafb;
00373     afb_offset = 1 + afb_dim1;
00374     afb -= afb_offset;
00375     --ipiv;
00376     --c__;
00377     b_dim1 = *ldb;
00378     b_offset = 1 + b_dim1;
00379     b -= b_offset;
00380     y_dim1 = *ldy;
00381     y_offset = 1 + y_dim1;
00382     y -= y_offset;
00383     --berr_out__;
00384     --res;
00385     --ayb;
00386     --dy;
00387     --y_tail__;
00388 
00389     /* Function Body */
00390     if (*info != 0) {
00391         return 0;
00392     }
00393     chla_transtype__(ch__1, (ftnlen)1, trans_type__);
00394     *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
00395     eps = dlamch_("Epsilon");
00396     hugeval = dlamch_("Overflow");
00397 /*     Force HUGEVAL to Inf */
00398     hugeval *= hugeval;
00399 /*     Using HUGEVAL may lead to spurious underflows. */
00400     incr_thresh__ = (doublereal) (*n) * eps;
00401     m = *kl + *ku + 1;
00402     i__1 = *nrhs;
00403     for (j = 1; j <= i__1; ++j) {
00404         y_prec_state__ = 1;
00405         if (y_prec_state__ == 2) {
00406             i__2 = *n;
00407             for (i__ = 1; i__ <= i__2; ++i__) {
00408                 y_tail__[i__] = 0.;
00409             }
00410         }
00411         dxrat = 0.;
00412         dxratmax = 0.;
00413         dzrat = 0.;
00414         dzratmax = 0.;
00415         final_dx_x__ = hugeval;
00416         final_dz_z__ = hugeval;
00417         prevnormdx = hugeval;
00418         prev_dz_z__ = hugeval;
00419         dz_z__ = hugeval;
00420         dx_x__ = hugeval;
00421         x_state__ = 1;
00422         z_state__ = 0;
00423         incr_prec__ = FALSE_;
00424         i__2 = *ithresh;
00425         for (cnt = 1; cnt <= i__2; ++cnt) {
00426 
00427 /*        Compute residual RES = B_s - op(A_s) * Y, */
00428 /*            op(A) = A, A**T, or A**H depending on TRANS (and type). */
00429 
00430             dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
00431             if (y_prec_state__ == 0) {
00432                 dgbmv_(trans, &m, n, kl, ku, &c_b6, &ab[ab_offset], ldab, &y[
00433                         j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1);
00434             } else if (y_prec_state__ == 1) {
00435                 blas_dgbmv_x__(trans_type__, n, n, kl, ku, &c_b6, &ab[
00436                         ab_offset], ldab, &y[j * y_dim1 + 1], &c__1, &c_b8, &
00437                         res[1], &c__1, prec_type__);
00438             } else {
00439                 blas_dgbmv2_x__(trans_type__, n, n, kl, ku, &c_b6, &ab[
00440                         ab_offset], ldab, &y[j * y_dim1 + 1], &y_tail__[1], &
00441                         c__1, &c_b8, &res[1], &c__1, prec_type__);
00442             }
00443 /*        XXX: RES is no longer needed. */
00444             dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
00445             dgbtrs_(trans, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1]
00446 , &dy[1], n, info);
00447 
00448 /*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
00449 
00450             normx = 0.;
00451             normy = 0.;
00452             normdx = 0.;
00453             dz_z__ = 0.;
00454             ymin = hugeval;
00455             i__3 = *n;
00456             for (i__ = 1; i__ <= i__3; ++i__) {
00457                 yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
00458                 dyk = (d__1 = dy[i__], abs(d__1));
00459                 if (yk != 0.) {
00460 /* Computing MAX */
00461                     d__1 = dz_z__, d__2 = dyk / yk;
00462                     dz_z__ = max(d__1,d__2);
00463                 } else if (dyk != 0.) {
00464                     dz_z__ = hugeval;
00465                 }
00466                 ymin = min(ymin,yk);
00467                 normy = max(normy,yk);
00468                 if (*colequ) {
00469 /* Computing MAX */
00470                     d__1 = normx, d__2 = yk * c__[i__];
00471                     normx = max(d__1,d__2);
00472 /* Computing MAX */
00473                     d__1 = normdx, d__2 = dyk * c__[i__];
00474                     normdx = max(d__1,d__2);
00475                 } else {
00476                     normx = normy;
00477                     normdx = max(normdx,dyk);
00478                 }
00479             }
00480             if (normx != 0.) {
00481                 dx_x__ = normdx / normx;
00482             } else if (normdx == 0.) {
00483                 dx_x__ = 0.;
00484             } else {
00485                 dx_x__ = hugeval;
00486             }
00487             dxrat = normdx / prevnormdx;
00488             dzrat = dz_z__ / prev_dz_z__;
00489 
00490 /*         Check termination criteria. */
00491 
00492             if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy 
00493                     && y_prec_state__ < 2) {
00494                 incr_prec__ = TRUE_;
00495             }
00496             if (x_state__ == 3 && dxrat <= *rthresh) {
00497                 x_state__ = 1;
00498             }
00499             if (x_state__ == 1) {
00500                 if (dx_x__ <= eps) {
00501                     x_state__ = 2;
00502                 } else if (dxrat > *rthresh) {
00503                     if (y_prec_state__ != 2) {
00504                         incr_prec__ = TRUE_;
00505                     } else {
00506                         x_state__ = 3;
00507                     }
00508                 } else {
00509                     if (dxrat > dxratmax) {
00510                         dxratmax = dxrat;
00511                     }
00512                 }
00513                 if (x_state__ > 1) {
00514                     final_dx_x__ = dx_x__;
00515                 }
00516             }
00517             if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
00518                 z_state__ = 1;
00519             }
00520             if (z_state__ == 3 && dzrat <= *rthresh) {
00521                 z_state__ = 1;
00522             }
00523             if (z_state__ == 1) {
00524                 if (dz_z__ <= eps) {
00525                     z_state__ = 2;
00526                 } else if (dz_z__ > *dz_ub__) {
00527                     z_state__ = 0;
00528                     dzratmax = 0.;
00529                     final_dz_z__ = hugeval;
00530                 } else if (dzrat > *rthresh) {
00531                     if (y_prec_state__ != 2) {
00532                         incr_prec__ = TRUE_;
00533                     } else {
00534                         z_state__ = 3;
00535                     }
00536                 } else {
00537                     if (dzrat > dzratmax) {
00538                         dzratmax = dzrat;
00539                     }
00540                 }
00541                 if (z_state__ > 1) {
00542                     final_dz_z__ = dz_z__;
00543                 }
00544             }
00545 
00546 /*           Exit if both normwise and componentwise stopped working, */
00547 /*           but if componentwise is unstable, let it go at least two */
00548 /*           iterations. */
00549 
00550             if (x_state__ != 1) {
00551                 if (*ignore_cwise__) {
00552                     goto L666;
00553                 }
00554                 if (z_state__ == 3 || z_state__ == 2) {
00555                     goto L666;
00556                 }
00557                 if (z_state__ == 0 && cnt > 1) {
00558                     goto L666;
00559                 }
00560             }
00561             if (incr_prec__) {
00562                 incr_prec__ = FALSE_;
00563                 ++y_prec_state__;
00564                 i__3 = *n;
00565                 for (i__ = 1; i__ <= i__3; ++i__) {
00566                     y_tail__[i__] = 0.;
00567                 }
00568             }
00569             prevnormdx = normdx;
00570             prev_dz_z__ = dz_z__;
00571 
00572 /*           Update soluton. */
00573 
00574             if (y_prec_state__ < 2) {
00575                 daxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
00576             } else {
00577                 dla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
00578             }
00579         }
00580 /*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT. */
00581 L666:
00582 
00583 /*     Set final_* when cnt hits ithresh. */
00584 
00585         if (x_state__ == 1) {
00586             final_dx_x__ = dx_x__;
00587         }
00588         if (z_state__ == 1) {
00589             final_dz_z__ = dz_z__;
00590         }
00591 
00592 /*     Compute error bounds. */
00593 
00594         if (*n_norms__ >= 1) {
00595             err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
00596                     1 - dxratmax);
00597         }
00598         if (*n_norms__ >= 2) {
00599             err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
00600                     1 - dzratmax);
00601         }
00602 
00603 /*     Compute componentwise relative backward error from formula */
00604 /*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
00605 /*     where abs(Z) is the componentwise absolute value of the matrix */
00606 /*     or vector Z. */
00607 
00608 /*        Compute residual RES = B_s - op(A_s) * Y, */
00609 /*            op(A) = A, A**T, or A**H depending on TRANS (and type). */
00610 
00611         dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
00612         dgbmv_(trans, n, n, kl, ku, &c_b6, &ab[ab_offset], ldab, &y[j * 
00613                 y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1);
00614         i__2 = *n;
00615         for (i__ = 1; i__ <= i__2; ++i__) {
00616             ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
00617         }
00618 
00619 /*     Compute abs(op(A_s))*abs(Y) + abs(B_s). */
00620 
00621         dla_gbamv__(trans_type__, n, n, kl, ku, &c_b8, &ab[ab_offset], ldab, &
00622                 y[j * y_dim1 + 1], &c__1, &c_b8, &ayb[1], &c__1);
00623         dla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
00624 
00625 /*     End of loop for each RHS */
00626 
00627     }
00628 
00629     return 0;
00630 } /* dla_gbrfsx_extended__ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:45