00001 /* dgerfsx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c_n1 = -1; 00019 static integer c__0 = 0; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int dgerfsx_(char *trans, char *equed, integer *n, integer * 00023 nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 00024 integer *ipiv, doublereal *r__, doublereal *c__, doublereal *b, 00025 integer *ldb, doublereal *x, integer *ldx, doublereal *rcond, 00026 doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, 00027 doublereal *err_bnds_comp__, integer *nparams, doublereal *params, 00028 doublereal *work, integer *iwork, integer *info) 00029 { 00030 /* System generated locals */ 00031 integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 00032 x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00033 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00034 doublereal d__1, d__2; 00035 00036 /* Builtin functions */ 00037 double sqrt(doublereal); 00038 00039 /* Local variables */ 00040 doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__; 00041 integer ref_type__; 00042 extern integer ilatrans_(char *); 00043 integer j; 00044 doublereal rcond_tmp__; 00045 integer prec_type__, trans_type__; 00046 extern doublereal dla_gercond__(char *, integer *, doublereal *, integer * 00047 , doublereal *, integer *, integer *, integer *, doublereal *, 00048 integer *, doublereal *, integer *, ftnlen); 00049 doublereal cwise_wrong__; 00050 extern /* Subroutine */ int dla_gerfsx_extended__(integer *, integer *, 00051 integer *, integer *, doublereal *, integer *, doublereal *, 00052 integer *, integer *, logical *, doublereal *, doublereal *, 00053 integer *, doublereal *, integer *, doublereal *, integer *, 00054 doublereal *, doublereal *, doublereal *, doublereal *, 00055 doublereal *, doublereal *, doublereal *, integer *, doublereal *, 00056 doublereal *, logical *, integer *); 00057 char norm[1]; 00058 logical ignore_cwise__; 00059 extern logical lsame_(char *, char *); 00060 doublereal anorm; 00061 extern doublereal dlamch_(char *), dlange_(char *, integer *, 00062 integer *, doublereal *, integer *, doublereal *); 00063 extern /* Subroutine */ int dgecon_(char *, integer *, doublereal *, 00064 integer *, doublereal *, doublereal *, doublereal *, integer *, 00065 integer *), xerbla_(char *, integer *); 00066 logical colequ, notran, rowequ; 00067 extern integer ilaprec_(char *); 00068 integer ithresh, n_norms__; 00069 doublereal rthresh; 00070 00071 00072 /* -- LAPACK routine (version 3.2.1) -- */ 00073 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00074 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00075 /* -- April 2009 -- */ 00076 00077 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00078 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00079 00080 /* .. */ 00081 /* .. Scalar Arguments .. */ 00082 /* .. */ 00083 /* .. Array Arguments .. */ 00084 /* .. */ 00085 00086 /* Purpose */ 00087 /* ======= */ 00088 00089 /* DGERFSX improves the computed solution to a system of linear */ 00090 /* equations and provides error bounds and backward error estimates */ 00091 /* for the solution. In addition to normwise error bound, the code */ 00092 /* provides maximum componentwise error bound if possible. See */ 00093 /* comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */ 00094 /* error bounds. */ 00095 00096 /* The original system of linear equations may have been equilibrated */ 00097 /* before calling this routine, as described by arguments EQUED, R */ 00098 /* and C below. In this case, the solution and error bounds returned */ 00099 /* are for the original unequilibrated system. */ 00100 00101 /* Arguments */ 00102 /* ========= */ 00103 00104 /* Some optional parameters are bundled in the PARAMS array. These */ 00105 /* settings determine how refinement is performed, but often the */ 00106 /* defaults are acceptable. If the defaults are acceptable, users */ 00107 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00108 /* the PARAMS argument. */ 00109 00110 /* TRANS (input) CHARACTER*1 */ 00111 /* Specifies the form of the system of equations: */ 00112 /* = 'N': A * X = B (No transpose) */ 00113 /* = 'T': A**T * X = B (Transpose) */ 00114 /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ 00115 00116 /* EQUED (input) CHARACTER*1 */ 00117 /* Specifies the form of equilibration that was done to A */ 00118 /* before calling this routine. This is needed to compute */ 00119 /* the solution and error bounds correctly. */ 00120 /* = 'N': No equilibration */ 00121 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00122 /* diag(R). */ 00123 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00124 /* by diag(C). */ 00125 /* = 'B': Both row and column equilibration, i.e., A has been */ 00126 /* replaced by diag(R) * A * diag(C). */ 00127 /* The right hand side B has been changed accordingly. */ 00128 00129 /* N (input) INTEGER */ 00130 /* The order of the matrix A. N >= 0. */ 00131 00132 /* NRHS (input) INTEGER */ 00133 /* The number of right hand sides, i.e., the number of columns */ 00134 /* of the matrices B and X. NRHS >= 0. */ 00135 00136 /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ 00137 /* The original N-by-N matrix A. */ 00138 00139 /* LDA (input) INTEGER */ 00140 /* The leading dimension of the array A. LDA >= max(1,N). */ 00141 00142 /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */ 00143 /* The factors L and U from the factorization A = P*L*U */ 00144 /* as computed by DGETRF. */ 00145 00146 /* LDAF (input) INTEGER */ 00147 /* The leading dimension of the array AF. LDAF >= max(1,N). */ 00148 00149 /* IPIV (input) INTEGER array, dimension (N) */ 00150 /* The pivot indices from DGETRF; for 1<=i<=N, row i of the */ 00151 /* matrix was interchanged with row IPIV(i). */ 00152 00153 /* R (input or output) DOUBLE PRECISION array, dimension (N) */ 00154 /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ 00155 /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ 00156 /* is not accessed. R is an input argument if FACT = 'F'; */ 00157 /* otherwise, R is an output argument. If FACT = 'F' and */ 00158 /* EQUED = 'R' or 'B', each element of R must be positive. */ 00159 /* If R is output, each element of R is a power of the radix. */ 00160 /* If R is input, each element of R should be a power of the radix */ 00161 /* to ensure a reliable solution and error estimates. Scaling by */ 00162 /* powers of the radix does not cause rounding errors unless the */ 00163 /* result underflows or overflows. Rounding errors during scaling */ 00164 /* lead to refining with a matrix that is not equivalent to the */ 00165 /* input matrix, producing error estimates that may not be */ 00166 /* reliable. */ 00167 00168 /* C (input or output) DOUBLE PRECISION array, dimension (N) */ 00169 /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ 00170 /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ 00171 /* is not accessed. C is an input argument if FACT = 'F'; */ 00172 /* otherwise, C is an output argument. If FACT = 'F' and */ 00173 /* EQUED = 'C' or 'B', each element of C must be positive. */ 00174 /* If C is output, each element of C is a power of the radix. */ 00175 /* If C is input, each element of C should be a power of the radix */ 00176 /* to ensure a reliable solution and error estimates. Scaling by */ 00177 /* powers of the radix does not cause rounding errors unless the */ 00178 /* result underflows or overflows. Rounding errors during scaling */ 00179 /* lead to refining with a matrix that is not equivalent to the */ 00180 /* input matrix, producing error estimates that may not be */ 00181 /* reliable. */ 00182 00183 /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00184 /* The right hand side matrix B. */ 00185 00186 /* LDB (input) INTEGER */ 00187 /* The leading dimension of the array B. LDB >= max(1,N). */ 00188 00189 /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00190 /* On entry, the solution matrix X, as computed by DGETRS. */ 00191 /* On exit, the improved solution matrix X. */ 00192 00193 /* LDX (input) INTEGER */ 00194 /* The leading dimension of the array X. LDX >= max(1,N). */ 00195 00196 /* RCOND (output) DOUBLE PRECISION */ 00197 /* Reciprocal scaled condition number. This is an estimate of the */ 00198 /* reciprocal Skeel condition number of the matrix A after */ 00199 /* equilibration (if done). If this is less than the machine */ 00200 /* precision (in particular, if it is zero), the matrix is singular */ 00201 /* to working precision. Note that the error may still be small even */ 00202 /* if this number is very small and the matrix appears ill- */ 00203 /* conditioned. */ 00204 00205 /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ 00206 /* Componentwise relative backward error. This is the */ 00207 /* componentwise relative backward error of each solution vector X(j) */ 00208 /* (i.e., the smallest relative change in any element of A or B that */ 00209 /* makes X(j) an exact solution). */ 00210 00211 /* N_ERR_BNDS (input) INTEGER */ 00212 /* Number of error bounds to return for each right hand side */ 00213 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00214 /* ERR_BNDS_COMP below. */ 00215 00216 /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00217 /* For each right-hand side, this array contains information about */ 00218 /* various error bounds and condition numbers corresponding to the */ 00219 /* normwise relative error, which is defined as follows: */ 00220 00221 /* Normwise relative error in the ith solution vector: */ 00222 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00223 /* ------------------------------ */ 00224 /* max_j abs(X(j,i)) */ 00225 00226 /* The array is indexed by the type of error information as described */ 00227 /* below. There currently are up to three pieces of information */ 00228 /* returned. */ 00229 00230 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00231 /* right-hand side. */ 00232 00233 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00234 /* three fields: */ 00235 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00236 /* reciprocal condition number is less than the threshold */ 00237 /* sqrt(n) * dlamch('Epsilon'). */ 00238 00239 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00240 /* almost certainly within a factor of 10 of the true error */ 00241 /* so long as the next entry is greater than the threshold */ 00242 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00243 /* be trusted if the previous boolean is true. */ 00244 00245 /* err = 3 Reciprocal condition number: Estimated normwise */ 00246 /* reciprocal condition number. Compared with the threshold */ 00247 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00248 /* estimate is "guaranteed". These reciprocal condition */ 00249 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00250 /* appropriately scaled matrix Z. */ 00251 /* Let Z = S*A, where S scales each row by a power of the */ 00252 /* radix so all absolute row sums of Z are approximately 1. */ 00253 00254 /* See Lapack Working Note 165 for further details and extra */ 00255 /* cautions. */ 00256 00257 /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00258 /* For each right-hand side, this array contains information about */ 00259 /* various error bounds and condition numbers corresponding to the */ 00260 /* componentwise relative error, which is defined as follows: */ 00261 00262 /* Componentwise relative error in the ith solution vector: */ 00263 /* abs(XTRUE(j,i) - X(j,i)) */ 00264 /* max_j ---------------------- */ 00265 /* abs(X(j,i)) */ 00266 00267 /* The array is indexed by the right-hand side i (on which the */ 00268 /* componentwise relative error depends), and the type of error */ 00269 /* information as described below. There currently are up to three */ 00270 /* pieces of information returned for each right-hand side. If */ 00271 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00272 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00273 /* the first (:,N_ERR_BNDS) entries are returned. */ 00274 00275 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00276 /* right-hand side. */ 00277 00278 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00279 /* three fields: */ 00280 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00281 /* reciprocal condition number is less than the threshold */ 00282 /* sqrt(n) * dlamch('Epsilon'). */ 00283 00284 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00285 /* almost certainly within a factor of 10 of the true error */ 00286 /* so long as the next entry is greater than the threshold */ 00287 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00288 /* be trusted if the previous boolean is true. */ 00289 00290 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00291 /* reciprocal condition number. Compared with the threshold */ 00292 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00293 /* estimate is "guaranteed". These reciprocal condition */ 00294 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00295 /* appropriately scaled matrix Z. */ 00296 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00297 /* current right-hand side and S scales each row of */ 00298 /* A*diag(x) by a power of the radix so all absolute row */ 00299 /* sums of Z are approximately 1. */ 00300 00301 /* See Lapack Working Note 165 for further details and extra */ 00302 /* cautions. */ 00303 00304 /* NPARAMS (input) INTEGER */ 00305 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00306 /* PARAMS array is never referenced and default values are used. */ 00307 00308 /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ 00309 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00310 /* that entry will be filled with default value used for that */ 00311 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00312 /* are used for higher-numbered parameters. */ 00313 00314 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00315 /* refinement or not. */ 00316 /* Default: 1.0D+0 */ 00317 /* = 0.0 : No refinement is performed, and no error bounds are */ 00318 /* computed. */ 00319 /* = 1.0 : Use the double-precision refinement algorithm, */ 00320 /* possibly with doubled-single computations if the */ 00321 /* compilation environment does not support DOUBLE */ 00322 /* PRECISION. */ 00323 /* (other values are reserved for future use) */ 00324 00325 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00326 /* computations allowed for refinement. */ 00327 /* Default: 10 */ 00328 /* Aggressive: Set to 100 to permit convergence using approximate */ 00329 /* factorizations or factorizations other than LU. If */ 00330 /* the factorization uses a technique other than */ 00331 /* Gaussian elimination, the guarantees in */ 00332 /* err_bnds_norm and err_bnds_comp may no longer be */ 00333 /* trustworthy. */ 00334 00335 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00336 /* will attempt to find a solution with small componentwise */ 00337 /* relative error in the double-precision algorithm. Positive */ 00338 /* is true, 0.0 is false. */ 00339 /* Default: 1.0 (attempt componentwise convergence) */ 00340 00341 /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ 00342 00343 /* IWORK (workspace) INTEGER array, dimension (N) */ 00344 00345 /* INFO (output) INTEGER */ 00346 /* = 0: Successful exit. The solution to every right-hand side is */ 00347 /* guaranteed. */ 00348 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00349 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00350 /* has been completed, but the factor U is exactly singular, so */ 00351 /* the solution and error bounds could not be computed. RCOND = 0 */ 00352 /* is returned. */ 00353 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00354 /* not guaranteed. The solutions corresponding to other right- */ 00355 /* hand sides K with K > J may not be guaranteed as well, but */ 00356 /* only the first such right-hand side is reported. If a small */ 00357 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00358 /* the Jth right-hand side is the first with a normwise error */ 00359 /* bound that is not guaranteed (the smallest J such */ 00360 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00361 /* the Jth right-hand side is the first with either a normwise or */ 00362 /* componentwise error bound that is not guaranteed (the smallest */ 00363 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00364 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00365 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00366 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00367 /* ERR_BNDS_COMP. */ 00368 00369 /* ================================================================== */ 00370 00371 /* .. Parameters .. */ 00372 /* .. */ 00373 /* .. Local Scalars .. */ 00374 /* .. */ 00375 /* .. External Subroutines .. */ 00376 /* .. */ 00377 /* .. Intrinsic Functions .. */ 00378 /* .. */ 00379 /* .. External Functions .. */ 00380 /* .. */ 00381 /* .. Executable Statements .. */ 00382 00383 /* Check the input parameters. */ 00384 00385 /* Parameter adjustments */ 00386 err_bnds_comp_dim1 = *nrhs; 00387 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00388 err_bnds_comp__ -= err_bnds_comp_offset; 00389 err_bnds_norm_dim1 = *nrhs; 00390 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00391 err_bnds_norm__ -= err_bnds_norm_offset; 00392 a_dim1 = *lda; 00393 a_offset = 1 + a_dim1; 00394 a -= a_offset; 00395 af_dim1 = *ldaf; 00396 af_offset = 1 + af_dim1; 00397 af -= af_offset; 00398 --ipiv; 00399 --r__; 00400 --c__; 00401 b_dim1 = *ldb; 00402 b_offset = 1 + b_dim1; 00403 b -= b_offset; 00404 x_dim1 = *ldx; 00405 x_offset = 1 + x_dim1; 00406 x -= x_offset; 00407 --berr; 00408 --params; 00409 --work; 00410 --iwork; 00411 00412 /* Function Body */ 00413 *info = 0; 00414 trans_type__ = ilatrans_(trans); 00415 ref_type__ = 1; 00416 if (*nparams >= 1) { 00417 if (params[1] < 0.) { 00418 params[1] = 1.; 00419 } else { 00420 ref_type__ = (integer) params[1]; 00421 } 00422 } 00423 00424 /* Set default parameters. */ 00425 00426 illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon"); 00427 ithresh = 10; 00428 rthresh = .5; 00429 unstable_thresh__ = .25; 00430 ignore_cwise__ = FALSE_; 00431 00432 if (*nparams >= 2) { 00433 if (params[2] < 0.) { 00434 params[2] = (doublereal) ithresh; 00435 } else { 00436 ithresh = (integer) params[2]; 00437 } 00438 } 00439 if (*nparams >= 3) { 00440 if (params[3] < 0.) { 00441 if (ignore_cwise__) { 00442 params[3] = 0.; 00443 } else { 00444 params[3] = 1.; 00445 } 00446 } else { 00447 ignore_cwise__ = params[3] == 0.; 00448 } 00449 } 00450 if (ref_type__ == 0 || *n_err_bnds__ == 0) { 00451 n_norms__ = 0; 00452 } else if (ignore_cwise__) { 00453 n_norms__ = 1; 00454 } else { 00455 n_norms__ = 2; 00456 } 00457 00458 notran = lsame_(trans, "N"); 00459 rowequ = lsame_(equed, "R") || lsame_(equed, "B"); 00460 colequ = lsame_(equed, "C") || lsame_(equed, "B"); 00461 00462 /* Test input parameters. */ 00463 00464 if (trans_type__ == -1) { 00465 *info = -1; 00466 } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) { 00467 *info = -2; 00468 } else if (*n < 0) { 00469 *info = -3; 00470 } else if (*nrhs < 0) { 00471 *info = -4; 00472 } else if (*lda < max(1,*n)) { 00473 *info = -6; 00474 } else if (*ldaf < max(1,*n)) { 00475 *info = -8; 00476 } else if (*ldb < max(1,*n)) { 00477 *info = -13; 00478 } else if (*ldx < max(1,*n)) { 00479 *info = -15; 00480 } 00481 if (*info != 0) { 00482 i__1 = -(*info); 00483 xerbla_("DGERFSX", &i__1); 00484 return 0; 00485 } 00486 00487 /* Quick return if possible. */ 00488 00489 if (*n == 0 || *nrhs == 0) { 00490 *rcond = 1.; 00491 i__1 = *nrhs; 00492 for (j = 1; j <= i__1; ++j) { 00493 berr[j] = 0.; 00494 if (*n_err_bnds__ >= 1) { 00495 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00496 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00497 } else if (*n_err_bnds__ >= 2) { 00498 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.; 00499 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.; 00500 } else if (*n_err_bnds__ >= 3) { 00501 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.; 00502 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.; 00503 } 00504 } 00505 return 0; 00506 } 00507 00508 /* Default to failure. */ 00509 00510 *rcond = 0.; 00511 i__1 = *nrhs; 00512 for (j = 1; j <= i__1; ++j) { 00513 berr[j] = 1.; 00514 if (*n_err_bnds__ >= 1) { 00515 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00516 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00517 } else if (*n_err_bnds__ >= 2) { 00518 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00519 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00520 } else if (*n_err_bnds__ >= 3) { 00521 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.; 00522 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.; 00523 } 00524 } 00525 00526 /* Compute the norm of A and the reciprocal of the condition */ 00527 /* number of A. */ 00528 00529 if (notran) { 00530 *(unsigned char *)norm = 'I'; 00531 } else { 00532 *(unsigned char *)norm = '1'; 00533 } 00534 anorm = dlange_(norm, n, n, &a[a_offset], lda, &work[1]); 00535 dgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 00536 info); 00537 00538 /* Perform refinement on each right-hand side */ 00539 00540 if (ref_type__ != 0) { 00541 prec_type__ = ilaprec_("E"); 00542 if (notran) { 00543 dla_gerfsx_extended__(&prec_type__, &trans_type__, n, nrhs, &a[ 00544 a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &colequ, & 00545 c__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], & 00546 n_norms__, &err_bnds_norm__[err_bnds_norm_offset], & 00547 err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], & 00548 work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh, 00549 &rthresh, &unstable_thresh__, &ignore_cwise__, info); 00550 } else { 00551 dla_gerfsx_extended__(&prec_type__, &trans_type__, n, nrhs, &a[ 00552 a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &rowequ, & 00553 r__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], & 00554 n_norms__, &err_bnds_norm__[err_bnds_norm_offset], & 00555 err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], & 00556 work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh, 00557 &rthresh, &unstable_thresh__, &ignore_cwise__, info); 00558 } 00559 } 00560 /* Computing MAX */ 00561 d__1 = 10., d__2 = sqrt((doublereal) (*n)); 00562 err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon"); 00563 if (*n_err_bnds__ >= 1 && n_norms__ >= 1) { 00564 00565 /* Compute scaled normwise condition number cond(A*C). */ 00566 00567 if (colequ && notran) { 00568 rcond_tmp__ = dla_gercond__(trans, n, &a[a_offset], lda, &af[ 00569 af_offset], ldaf, &ipiv[1], &c_n1, &c__[1], info, &work[1] 00570 , &iwork[1], (ftnlen)1); 00571 } else if (rowequ && ! notran) { 00572 rcond_tmp__ = dla_gercond__(trans, n, &a[a_offset], lda, &af[ 00573 af_offset], ldaf, &ipiv[1], &c_n1, &r__[1], info, &work[1] 00574 , &iwork[1], (ftnlen)1); 00575 } else { 00576 rcond_tmp__ = dla_gercond__(trans, n, &a[a_offset], lda, &af[ 00577 af_offset], ldaf, &ipiv[1], &c__0, &r__[1], info, &work[1] 00578 , &iwork[1], (ftnlen)1); 00579 } 00580 i__1 = *nrhs; 00581 for (j = 1; j <= i__1; ++j) { 00582 00583 /* Cap the error at 1.0. */ 00584 00585 if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 00586 << 1)] > 1.) { 00587 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00588 } 00589 00590 /* Threshold the error (see LAWN). */ 00591 00592 if (rcond_tmp__ < illrcond_thresh__) { 00593 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00594 err_bnds_norm__[j + err_bnds_norm_dim1] = 0.; 00595 if (*info <= *n) { 00596 *info = *n + j; 00597 } 00598 } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 00599 err_lbnd__) { 00600 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__; 00601 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00602 } 00603 00604 /* Save the condition number. */ 00605 00606 if (*n_err_bnds__ >= 3) { 00607 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__; 00608 } 00609 } 00610 } 00611 if (*n_err_bnds__ >= 1 && n_norms__ >= 2) { 00612 00613 /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */ 00614 /* each right-hand side using the current solution as an estimate of */ 00615 /* the true solution. If the componentwise error estimate is too */ 00616 /* large, then the solution is a lousy estimate of truth and the */ 00617 /* estimated RCOND may be too optimistic. To avoid misleading users, */ 00618 /* the inverse condition number is set to 0.0 when the estimated */ 00619 /* cwise error is at least CWISE_WRONG. */ 00620 00621 cwise_wrong__ = sqrt(dlamch_("Epsilon")); 00622 i__1 = *nrhs; 00623 for (j = 1; j <= i__1; ++j) { 00624 if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00625 cwise_wrong__) { 00626 rcond_tmp__ = dla_gercond__(trans, n, &a[a_offset], lda, &af[ 00627 af_offset], ldaf, &ipiv[1], &c__1, &x[j * x_dim1 + 1], 00628 info, &work[1], &iwork[1], (ftnlen)1); 00629 } else { 00630 rcond_tmp__ = 0.; 00631 } 00632 00633 /* Cap the error at 1.0. */ 00634 00635 if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 00636 << 1)] > 1.) { 00637 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00638 } 00639 00640 /* Threshold the error (see LAWN). */ 00641 00642 if (rcond_tmp__ < illrcond_thresh__) { 00643 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00644 err_bnds_comp__[j + err_bnds_comp_dim1] = 0.; 00645 if (params[3] == 1. && *info < *n + j) { 00646 *info = *n + j; 00647 } 00648 } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00649 err_lbnd__) { 00650 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__; 00651 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00652 } 00653 00654 /* Save the condition number. */ 00655 00656 if (*n_err_bnds__ >= 3) { 00657 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__; 00658 } 00659 } 00660 } 00661 00662 return 0; 00663 00664 /* End of DGERFSX */ 00665 00666 } /* dgerfsx_ */