cungqr.c
Go to the documentation of this file.
00001 /* cungqr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static integer c_n1 = -1;
00020 static integer c__3 = 3;
00021 static integer c__2 = 2;
00022 
00023 /* Subroutine */ int cungqr_(integer *m, integer *n, integer *k, complex *a, 
00024         integer *lda, complex *tau, complex *work, integer *lwork, integer *
00025         info)
00026 {
00027     /* System generated locals */
00028     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
00029 
00030     /* Local variables */
00031     integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
00032     extern /* Subroutine */ int cung2r_(integer *, integer *, integer *, 
00033             complex *, integer *, complex *, complex *, integer *), clarfb_(
00034             char *, char *, char *, char *, integer *, integer *, integer *, 
00035             complex *, integer *, complex *, integer *, complex *, integer *, 
00036             complex *, integer *), clarft_(
00037             char *, char *, integer *, integer *, complex *, integer *, 
00038             complex *, complex *, integer *), xerbla_(char *, 
00039             integer *);
00040     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00041             integer *, integer *);
00042     integer ldwork, lwkopt;
00043     logical lquery;
00044 
00045 
00046 /*  -- LAPACK routine (version 3.2) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  CUNGQR generates an M-by-N complex matrix Q with orthonormal columns, */
00059 /*  which is defined as the first N columns of a product of K elementary */
00060 /*  reflectors of order M */
00061 
00062 /*        Q  =  H(1) H(2) . . . H(k) */
00063 
00064 /*  as returned by CGEQRF. */
00065 
00066 /*  Arguments */
00067 /*  ========= */
00068 
00069 /*  M       (input) INTEGER */
00070 /*          The number of rows of the matrix Q. M >= 0. */
00071 
00072 /*  N       (input) INTEGER */
00073 /*          The number of columns of the matrix Q. M >= N >= 0. */
00074 
00075 /*  K       (input) INTEGER */
00076 /*          The number of elementary reflectors whose product defines the */
00077 /*          matrix Q. N >= K >= 0. */
00078 
00079 /*  A       (input/output) COMPLEX array, dimension (LDA,N) */
00080 /*          On entry, the i-th column must contain the vector which */
00081 /*          defines the elementary reflector H(i), for i = 1,2,...,k, as */
00082 /*          returned by CGEQRF in the first k columns of its array */
00083 /*          argument A. */
00084 /*          On exit, the M-by-N matrix Q. */
00085 
00086 /*  LDA     (input) INTEGER */
00087 /*          The first dimension of the array A. LDA >= max(1,M). */
00088 
00089 /*  TAU     (input) COMPLEX array, dimension (K) */
00090 /*          TAU(i) must contain the scalar factor of the elementary */
00091 /*          reflector H(i), as returned by CGEQRF. */
00092 
00093 /*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
00094 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00095 
00096 /*  LWORK   (input) INTEGER */
00097 /*          The dimension of the array WORK. LWORK >= max(1,N). */
00098 /*          For optimum performance LWORK >= N*NB, where NB is the */
00099 /*          optimal blocksize. */
00100 
00101 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00102 /*          only calculates the optimal size of the WORK array, returns */
00103 /*          this value as the first entry of the WORK array, and no error */
00104 /*          message related to LWORK is issued by XERBLA. */
00105 
00106 /*  INFO    (output) INTEGER */
00107 /*          = 0:  successful exit */
00108 /*          < 0:  if INFO = -i, the i-th argument has an illegal value */
00109 
00110 /*  ===================================================================== */
00111 
00112 /*     .. Parameters .. */
00113 /*     .. */
00114 /*     .. Local Scalars .. */
00115 /*     .. */
00116 /*     .. External Subroutines .. */
00117 /*     .. */
00118 /*     .. Intrinsic Functions .. */
00119 /*     .. */
00120 /*     .. External Functions .. */
00121 /*     .. */
00122 /*     .. Executable Statements .. */
00123 
00124 /*     Test the input arguments */
00125 
00126     /* Parameter adjustments */
00127     a_dim1 = *lda;
00128     a_offset = 1 + a_dim1;
00129     a -= a_offset;
00130     --tau;
00131     --work;
00132 
00133     /* Function Body */
00134     *info = 0;
00135     nb = ilaenv_(&c__1, "CUNGQR", " ", m, n, k, &c_n1);
00136     lwkopt = max(1,*n) * nb;
00137     work[1].r = (real) lwkopt, work[1].i = 0.f;
00138     lquery = *lwork == -1;
00139     if (*m < 0) {
00140         *info = -1;
00141     } else if (*n < 0 || *n > *m) {
00142         *info = -2;
00143     } else if (*k < 0 || *k > *n) {
00144         *info = -3;
00145     } else if (*lda < max(1,*m)) {
00146         *info = -5;
00147     } else if (*lwork < max(1,*n) && ! lquery) {
00148         *info = -8;
00149     }
00150     if (*info != 0) {
00151         i__1 = -(*info);
00152         xerbla_("CUNGQR", &i__1);
00153         return 0;
00154     } else if (lquery) {
00155         return 0;
00156     }
00157 
00158 /*     Quick return if possible */
00159 
00160     if (*n <= 0) {
00161         work[1].r = 1.f, work[1].i = 0.f;
00162         return 0;
00163     }
00164 
00165     nbmin = 2;
00166     nx = 0;
00167     iws = *n;
00168     if (nb > 1 && nb < *k) {
00169 
00170 /*        Determine when to cross over from blocked to unblocked code. */
00171 
00172 /* Computing MAX */
00173         i__1 = 0, i__2 = ilaenv_(&c__3, "CUNGQR", " ", m, n, k, &c_n1);
00174         nx = max(i__1,i__2);
00175         if (nx < *k) {
00176 
00177 /*           Determine if workspace is large enough for blocked code. */
00178 
00179             ldwork = *n;
00180             iws = ldwork * nb;
00181             if (*lwork < iws) {
00182 
00183 /*              Not enough workspace to use optimal NB:  reduce NB and */
00184 /*              determine the minimum value of NB. */
00185 
00186                 nb = *lwork / ldwork;
00187 /* Computing MAX */
00188                 i__1 = 2, i__2 = ilaenv_(&c__2, "CUNGQR", " ", m, n, k, &c_n1);
00189                 nbmin = max(i__1,i__2);
00190             }
00191         }
00192     }
00193 
00194     if (nb >= nbmin && nb < *k && nx < *k) {
00195 
00196 /*        Use blocked code after the last block. */
00197 /*        The first kk columns are handled by the block method. */
00198 
00199         ki = (*k - nx - 1) / nb * nb;
00200 /* Computing MIN */
00201         i__1 = *k, i__2 = ki + nb;
00202         kk = min(i__1,i__2);
00203 
00204 /*        Set A(1:kk,kk+1:n) to zero. */
00205 
00206         i__1 = *n;
00207         for (j = kk + 1; j <= i__1; ++j) {
00208             i__2 = kk;
00209             for (i__ = 1; i__ <= i__2; ++i__) {
00210                 i__3 = i__ + j * a_dim1;
00211                 a[i__3].r = 0.f, a[i__3].i = 0.f;
00212 /* L10: */
00213             }
00214 /* L20: */
00215         }
00216     } else {
00217         kk = 0;
00218     }
00219 
00220 /*     Use unblocked code for the last or only block. */
00221 
00222     if (kk < *n) {
00223         i__1 = *m - kk;
00224         i__2 = *n - kk;
00225         i__3 = *k - kk;
00226         cung2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
00227                 tau[kk + 1], &work[1], &iinfo);
00228     }
00229 
00230     if (kk > 0) {
00231 
00232 /*        Use blocked code */
00233 
00234         i__1 = -nb;
00235         for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
00236 /* Computing MIN */
00237             i__2 = nb, i__3 = *k - i__ + 1;
00238             ib = min(i__2,i__3);
00239             if (i__ + ib <= *n) {
00240 
00241 /*              Form the triangular factor of the block reflector */
00242 /*              H = H(i) H(i+1) . . . H(i+ib-1) */
00243 
00244                 i__2 = *m - i__ + 1;
00245                 clarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ * 
00246                         a_dim1], lda, &tau[i__], &work[1], &ldwork);
00247 
00248 /*              Apply H to A(i:m,i+ib:n) from the left */
00249 
00250                 i__2 = *m - i__ + 1;
00251                 i__3 = *n - i__ - ib + 1;
00252                 clarfb_("Left", "No transpose", "Forward", "Columnwise", &
00253                         i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
00254                         1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
00255                         work[ib + 1], &ldwork);
00256             }
00257 
00258 /*           Apply H to rows i:m of current block */
00259 
00260             i__2 = *m - i__ + 1;
00261             cung2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
00262                     work[1], &iinfo);
00263 
00264 /*           Set rows 1:i-1 of current block to zero */
00265 
00266             i__2 = i__ + ib - 1;
00267             for (j = i__; j <= i__2; ++j) {
00268                 i__3 = i__ - 1;
00269                 for (l = 1; l <= i__3; ++l) {
00270                     i__4 = l + j * a_dim1;
00271                     a[i__4].r = 0.f, a[i__4].i = 0.f;
00272 /* L30: */
00273                 }
00274 /* L40: */
00275             }
00276 /* L50: */
00277         }
00278     }
00279 
00280     work[1].r = (real) iws, work[1].i = 0.f;
00281     return 0;
00282 
00283 /*     End of CUNGQR */
00284 
00285 } /* cungqr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:35