cung2r.c
Go to the documentation of this file.
00001 /* cung2r.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int cung2r_(integer *m, integer *n, integer *k, complex *a, 
00021         integer *lda, complex *tau, complex *work, integer *info)
00022 {
00023     /* System generated locals */
00024     integer a_dim1, a_offset, i__1, i__2, i__3;
00025     complex q__1;
00026 
00027     /* Local variables */
00028     integer i__, j, l;
00029     extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
00030             integer *), clarf_(char *, integer *, integer *, complex *, 
00031             integer *, complex *, complex *, integer *, complex *), 
00032             xerbla_(char *, integer *);
00033 
00034 
00035 /*  -- LAPACK routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  CUNG2R generates an m by n complex matrix Q with orthonormal columns, */
00048 /*  which is defined as the first n columns of a product of k elementary */
00049 /*  reflectors of order m */
00050 
00051 /*        Q  =  H(1) H(2) . . . H(k) */
00052 
00053 /*  as returned by CGEQRF. */
00054 
00055 /*  Arguments */
00056 /*  ========= */
00057 
00058 /*  M       (input) INTEGER */
00059 /*          The number of rows of the matrix Q. M >= 0. */
00060 
00061 /*  N       (input) INTEGER */
00062 /*          The number of columns of the matrix Q. M >= N >= 0. */
00063 
00064 /*  K       (input) INTEGER */
00065 /*          The number of elementary reflectors whose product defines the */
00066 /*          matrix Q. N >= K >= 0. */
00067 
00068 /*  A       (input/output) COMPLEX array, dimension (LDA,N) */
00069 /*          On entry, the i-th column must contain the vector which */
00070 /*          defines the elementary reflector H(i), for i = 1,2,...,k, as */
00071 /*          returned by CGEQRF in the first k columns of its array */
00072 /*          argument A. */
00073 /*          On exit, the m by n matrix Q. */
00074 
00075 /*  LDA     (input) INTEGER */
00076 /*          The first dimension of the array A. LDA >= max(1,M). */
00077 
00078 /*  TAU     (input) COMPLEX array, dimension (K) */
00079 /*          TAU(i) must contain the scalar factor of the elementary */
00080 /*          reflector H(i), as returned by CGEQRF. */
00081 
00082 /*  WORK    (workspace) COMPLEX array, dimension (N) */
00083 
00084 /*  INFO    (output) INTEGER */
00085 /*          = 0: successful exit */
00086 /*          < 0: if INFO = -i, the i-th argument has an illegal value */
00087 
00088 /*  ===================================================================== */
00089 
00090 /*     .. Parameters .. */
00091 /*     .. */
00092 /*     .. Local Scalars .. */
00093 /*     .. */
00094 /*     .. External Subroutines .. */
00095 /*     .. */
00096 /*     .. Intrinsic Functions .. */
00097 /*     .. */
00098 /*     .. Executable Statements .. */
00099 
00100 /*     Test the input arguments */
00101 
00102     /* Parameter adjustments */
00103     a_dim1 = *lda;
00104     a_offset = 1 + a_dim1;
00105     a -= a_offset;
00106     --tau;
00107     --work;
00108 
00109     /* Function Body */
00110     *info = 0;
00111     if (*m < 0) {
00112         *info = -1;
00113     } else if (*n < 0 || *n > *m) {
00114         *info = -2;
00115     } else if (*k < 0 || *k > *n) {
00116         *info = -3;
00117     } else if (*lda < max(1,*m)) {
00118         *info = -5;
00119     }
00120     if (*info != 0) {
00121         i__1 = -(*info);
00122         xerbla_("CUNG2R", &i__1);
00123         return 0;
00124     }
00125 
00126 /*     Quick return if possible */
00127 
00128     if (*n <= 0) {
00129         return 0;
00130     }
00131 
00132 /*     Initialise columns k+1:n to columns of the unit matrix */
00133 
00134     i__1 = *n;
00135     for (j = *k + 1; j <= i__1; ++j) {
00136         i__2 = *m;
00137         for (l = 1; l <= i__2; ++l) {
00138             i__3 = l + j * a_dim1;
00139             a[i__3].r = 0.f, a[i__3].i = 0.f;
00140 /* L10: */
00141         }
00142         i__2 = j + j * a_dim1;
00143         a[i__2].r = 1.f, a[i__2].i = 0.f;
00144 /* L20: */
00145     }
00146 
00147     for (i__ = *k; i__ >= 1; --i__) {
00148 
00149 /*        Apply H(i) to A(i:m,i:n) from the left */
00150 
00151         if (i__ < *n) {
00152             i__1 = i__ + i__ * a_dim1;
00153             a[i__1].r = 1.f, a[i__1].i = 0.f;
00154             i__1 = *m - i__ + 1;
00155             i__2 = *n - i__;
00156             clarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
00157                     i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
00158         }
00159         if (i__ < *m) {
00160             i__1 = *m - i__;
00161             i__2 = i__;
00162             q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i;
00163             cscal_(&i__1, &q__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
00164         }
00165         i__1 = i__ + i__ * a_dim1;
00166         i__2 = i__;
00167         q__1.r = 1.f - tau[i__2].r, q__1.i = 0.f - tau[i__2].i;
00168         a[i__1].r = q__1.r, a[i__1].i = q__1.i;
00169 
00170 /*        Set A(1:i-1,i) to zero */
00171 
00172         i__1 = i__ - 1;
00173         for (l = 1; l <= i__1; ++l) {
00174             i__2 = l + i__ * a_dim1;
00175             a[i__2].r = 0.f, a[i__2].i = 0.f;
00176 /* L30: */
00177         }
00178 /* L40: */
00179     }
00180     return 0;
00181 
00182 /*     End of CUNG2R */
00183 
00184 } /* cung2r_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:35