ctrt03.c
Go to the documentation of this file.
00001 /* ctrt03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int ctrt03_(char *uplo, char *trans, char *diag, integer *n, 
00021         integer *nrhs, complex *a, integer *lda, real *scale, real *cnorm, 
00022         real *tscal, complex *x, integer *ldx, complex *b, integer *ldb, 
00023         complex *work, real *resid)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
00027     real r__1, r__2;
00028     complex q__1;
00029 
00030     /* Builtin functions */
00031     double c_abs(complex *);
00032 
00033     /* Local variables */
00034     integer j, ix;
00035     real eps, err;
00036     extern logical lsame_(char *, char *);
00037     real xscal;
00038     extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
00039             complex *, integer *), caxpy_(integer *, complex *, complex *, 
00040             integer *, complex *, integer *), ctrmv_(char *, char *, char *, 
00041             integer *, complex *, integer *, complex *, integer *);
00042     real tnorm, xnorm;
00043     extern integer icamax_(integer *, complex *, integer *);
00044     extern doublereal slamch_(char *);
00045     extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
00046             *);
00047     real smlnum;
00048 
00049 
00050 /*  -- LAPACK test routine (version 3.1) -- */
00051 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00052 /*     November 2006 */
00053 
00054 /*     .. Scalar Arguments .. */
00055 /*     .. */
00056 /*     .. Array Arguments .. */
00057 /*     .. */
00058 
00059 /*  Purpose */
00060 /*  ======= */
00061 
00062 /*  CTRT03 computes the residual for the solution to a scaled triangular */
00063 /*  system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b. */
00064 /*  Here A is a triangular matrix, A**T denotes the transpose of A, A**H */
00065 /*  denotes the conjugate transpose of A, s is a scalar, and x and b are */
00066 /*  N by NRHS matrices.  The test ratio is the maximum over the number of */
00067 /*  right hand sides of */
00068 /*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
00069 /*  where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */
00070 
00071 /*  Arguments */
00072 /*  ========= */
00073 
00074 /*  UPLO    (input) CHARACTER*1 */
00075 /*          Specifies whether the matrix A is upper or lower triangular. */
00076 /*          = 'U':  Upper triangular */
00077 /*          = 'L':  Lower triangular */
00078 
00079 /*  TRANS   (input) CHARACTER*1 */
00080 /*          Specifies the operation applied to A. */
00081 /*          = 'N':  A *x = s*b     (No transpose) */
00082 /*          = 'T':  A**T *x = s*b  (Transpose) */
00083 /*          = 'C':  A**H *x = s*b  (Conjugate transpose) */
00084 
00085 /*  DIAG    (input) CHARACTER*1 */
00086 /*          Specifies whether or not the matrix A is unit triangular. */
00087 /*          = 'N':  Non-unit triangular */
00088 /*          = 'U':  Unit triangular */
00089 
00090 /*  N       (input) INTEGER */
00091 /*          The order of the matrix A.  N >= 0. */
00092 
00093 /*  NRHS    (input) INTEGER */
00094 /*          The number of right hand sides, i.e., the number of columns */
00095 /*          of the matrices X and B.  NRHS >= 0. */
00096 
00097 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00098 /*          The triangular matrix A.  If UPLO = 'U', the leading n by n */
00099 /*          upper triangular part of the array A contains the upper */
00100 /*          triangular matrix, and the strictly lower triangular part of */
00101 /*          A is not referenced.  If UPLO = 'L', the leading n by n lower */
00102 /*          triangular part of the array A contains the lower triangular */
00103 /*          matrix, and the strictly upper triangular part of A is not */
00104 /*          referenced.  If DIAG = 'U', the diagonal elements of A are */
00105 /*          also not referenced and are assumed to be 1. */
00106 
00107 /*  LDA     (input) INTEGER */
00108 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00109 
00110 /*  SCALE   (input) REAL */
00111 /*          The scaling factor s used in solving the triangular system. */
00112 
00113 /*  CNORM   (input) REAL array, dimension (N) */
00114 /*          The 1-norms of the columns of A, not counting the diagonal. */
00115 
00116 /*  TSCAL   (input) REAL */
00117 /*          The scaling factor used in computing the 1-norms in CNORM. */
00118 /*          CNORM actually contains the column norms of TSCAL*A. */
00119 
00120 /*  X       (input) COMPLEX array, dimension (LDX,NRHS) */
00121 /*          The computed solution vectors for the system of linear */
00122 /*          equations. */
00123 
00124 /*  LDX     (input) INTEGER */
00125 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00126 
00127 /*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
00128 /*          The right hand side vectors for the system of linear */
00129 /*          equations. */
00130 
00131 /*  LDB     (input) INTEGER */
00132 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00133 
00134 /*  WORK    (workspace) COMPLEX array, dimension (N) */
00135 
00136 /*  RESID   (output) REAL */
00137 /*          The maximum over the number of right hand sides of */
00138 /*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00139 
00140 /*  ===================================================================== */
00141 
00142 /*     .. Parameters .. */
00143 /*     .. */
00144 /*     .. Local Scalars .. */
00145 /*     .. */
00146 /*     .. External Functions .. */
00147 /*     .. */
00148 /*     .. External Subroutines .. */
00149 /*     .. */
00150 /*     .. Intrinsic Functions .. */
00151 /*     .. */
00152 /*     .. Executable Statements .. */
00153 
00154 /*     Quick exit if N = 0 */
00155 
00156     /* Parameter adjustments */
00157     a_dim1 = *lda;
00158     a_offset = 1 + a_dim1;
00159     a -= a_offset;
00160     --cnorm;
00161     x_dim1 = *ldx;
00162     x_offset = 1 + x_dim1;
00163     x -= x_offset;
00164     b_dim1 = *ldb;
00165     b_offset = 1 + b_dim1;
00166     b -= b_offset;
00167     --work;
00168 
00169     /* Function Body */
00170     if (*n <= 0 || *nrhs <= 0) {
00171         *resid = 0.f;
00172         return 0;
00173     }
00174     eps = slamch_("Epsilon");
00175     smlnum = slamch_("Safe minimum");
00176 
00177 /*     Compute the norm of the triangular matrix A using the column */
00178 /*     norms already computed by CLATRS. */
00179 
00180     tnorm = 0.f;
00181     if (lsame_(diag, "N")) {
00182         i__1 = *n;
00183         for (j = 1; j <= i__1; ++j) {
00184 /* Computing MAX */
00185             r__1 = tnorm, r__2 = *tscal * c_abs(&a[j + j * a_dim1]) + cnorm[j]
00186                     ;
00187             tnorm = dmax(r__1,r__2);
00188 /* L10: */
00189         }
00190     } else {
00191         i__1 = *n;
00192         for (j = 1; j <= i__1; ++j) {
00193 /* Computing MAX */
00194             r__1 = tnorm, r__2 = *tscal + cnorm[j];
00195             tnorm = dmax(r__1,r__2);
00196 /* L20: */
00197         }
00198     }
00199 
00200 /*     Compute the maximum over the number of right hand sides of */
00201 /*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00202 
00203     *resid = 0.f;
00204     i__1 = *nrhs;
00205     for (j = 1; j <= i__1; ++j) {
00206         ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
00207         ix = icamax_(n, &work[1], &c__1);
00208 /* Computing MAX */
00209         r__1 = 1.f, r__2 = c_abs(&x[ix + j * x_dim1]);
00210         xnorm = dmax(r__1,r__2);
00211         xscal = 1.f / xnorm / (real) (*n);
00212         csscal_(n, &xscal, &work[1], &c__1);
00213         ctrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1);
00214         r__1 = -(*scale) * xscal;
00215         q__1.r = r__1, q__1.i = 0.f;
00216         caxpy_(n, &q__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00217         ix = icamax_(n, &work[1], &c__1);
00218         err = *tscal * c_abs(&work[ix]);
00219         ix = icamax_(n, &x[j * x_dim1 + 1], &c__1);
00220         xnorm = c_abs(&x[ix + j * x_dim1]);
00221         if (err * smlnum <= xnorm) {
00222             if (xnorm > 0.f) {
00223                 err /= xnorm;
00224             }
00225         } else {
00226             if (err > 0.f) {
00227                 err = 1.f / eps;
00228             }
00229         }
00230         if (err * smlnum <= tnorm) {
00231             if (tnorm > 0.f) {
00232                 err /= tnorm;
00233             }
00234         } else {
00235             if (err > 0.f) {
00236                 err = 1.f / eps;
00237             }
00238         }
00239         *resid = dmax(*resid,err);
00240 /* L30: */
00241     }
00242 
00243     return 0;
00244 
00245 /*     End of CTRT03 */
00246 
00247 } /* ctrt03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:35