00001 /* ctrt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static complex c_b12 = {-1.f,0.f}; 00020 00021 /* Subroutine */ int ctrt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, complex *a, integer *lda, complex *x, integer *ldx, 00023 complex *b, integer *ldb, complex *work, real *rwork, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 real eps; 00032 extern logical lsame_(char *, char *); 00033 real anorm, bnorm; 00034 extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 00035 complex *, integer *), caxpy_(integer *, complex *, complex *, 00036 integer *, complex *, integer *), ctrmv_(char *, char *, char *, 00037 integer *, complex *, integer *, complex *, integer *); 00038 real xnorm; 00039 extern doublereal slamch_(char *), clantr_(char *, char *, char *, 00040 integer *, integer *, complex *, integer *, real *), scasum_(integer *, complex *, integer *); 00041 00042 00043 /* -- LAPACK test routine (version 3.1) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* CTRT02 computes the residual for the computed solution to a */ 00056 /* triangular system of linear equations A*x = b, A**T *x = b, */ 00057 /* or A**H *x = b. Here A is a triangular matrix, A**T is the transpose */ 00058 /* of A, A**H is the conjugate transpose of A, and x and b are N by NRHS */ 00059 /* matrices. The test ratio is the maximum over the number of right */ 00060 /* hand sides of */ 00061 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00062 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00063 00064 /* Arguments */ 00065 /* ========= */ 00066 00067 /* UPLO (input) CHARACTER*1 */ 00068 /* Specifies whether the matrix A is upper or lower triangular. */ 00069 /* = 'U': Upper triangular */ 00070 /* = 'L': Lower triangular */ 00071 00072 /* TRANS (input) CHARACTER*1 */ 00073 /* Specifies the operation applied to A. */ 00074 /* = 'N': A *x = b (No transpose) */ 00075 /* = 'T': A**T *x = b (Transpose) */ 00076 /* = 'C': A**H *x = b (Conjugate transpose) */ 00077 00078 /* DIAG (input) CHARACTER*1 */ 00079 /* Specifies whether or not the matrix A is unit triangular. */ 00080 /* = 'N': Non-unit triangular */ 00081 /* = 'U': Unit triangular */ 00082 00083 /* N (input) INTEGER */ 00084 /* The order of the matrix A. N >= 0. */ 00085 00086 /* NRHS (input) INTEGER */ 00087 /* The number of right hand sides, i.e., the number of columns */ 00088 /* of the matrices X and B. NRHS >= 0. */ 00089 00090 /* A (input) COMPLEX array, dimension (LDA,N) */ 00091 /* The triangular matrix A. If UPLO = 'U', the leading n by n */ 00092 /* upper triangular part of the array A contains the upper */ 00093 /* triangular matrix, and the strictly lower triangular part of */ 00094 /* A is not referenced. If UPLO = 'L', the leading n by n lower */ 00095 /* triangular part of the array A contains the lower triangular */ 00096 /* matrix, and the strictly upper triangular part of A is not */ 00097 /* referenced. If DIAG = 'U', the diagonal elements of A are */ 00098 /* also not referenced and are assumed to be 1. */ 00099 00100 /* LDA (input) INTEGER */ 00101 /* The leading dimension of the array A. LDA >= max(1,N). */ 00102 00103 /* X (input) COMPLEX array, dimension (LDX,NRHS) */ 00104 /* The computed solution vectors for the system of linear */ 00105 /* equations. */ 00106 00107 /* LDX (input) INTEGER */ 00108 /* The leading dimension of the array X. LDX >= max(1,N). */ 00109 00110 /* B (input) COMPLEX array, dimension (LDB,NRHS) */ 00111 /* The right hand side vectors for the system of linear */ 00112 /* equations. */ 00113 00114 /* LDB (input) INTEGER */ 00115 /* The leading dimension of the array B. LDB >= max(1,N). */ 00116 00117 /* WORK (workspace) COMPLEX array, dimension (N) */ 00118 00119 /* RWORK (workspace) REAL array, dimension (N) */ 00120 00121 /* RESID (output) REAL */ 00122 /* The maximum over the number of right hand sides of */ 00123 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00124 00125 /* ===================================================================== */ 00126 00127 /* .. Parameters .. */ 00128 /* .. */ 00129 /* .. Local Scalars .. */ 00130 /* .. */ 00131 /* .. External Functions .. */ 00132 /* .. */ 00133 /* .. External Subroutines .. */ 00134 /* .. */ 00135 /* .. Intrinsic Functions .. */ 00136 /* .. */ 00137 /* .. Executable Statements .. */ 00138 00139 /* Quick exit if N = 0 or NRHS = 0 */ 00140 00141 /* Parameter adjustments */ 00142 a_dim1 = *lda; 00143 a_offset = 1 + a_dim1; 00144 a -= a_offset; 00145 x_dim1 = *ldx; 00146 x_offset = 1 + x_dim1; 00147 x -= x_offset; 00148 b_dim1 = *ldb; 00149 b_offset = 1 + b_dim1; 00150 b -= b_offset; 00151 --work; 00152 --rwork; 00153 00154 /* Function Body */ 00155 if (*n <= 0 || *nrhs <= 0) { 00156 *resid = 0.f; 00157 return 0; 00158 } 00159 00160 /* Compute the 1-norm of A or A**H. */ 00161 00162 if (lsame_(trans, "N")) { 00163 anorm = clantr_("1", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); 00164 } else { 00165 anorm = clantr_("I", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); 00166 } 00167 00168 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00169 00170 eps = slamch_("Epsilon"); 00171 if (anorm <= 0.f) { 00172 *resid = 1.f / eps; 00173 return 0; 00174 } 00175 00176 /* Compute the maximum over the number of right hand sides of */ 00177 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ) */ 00178 00179 *resid = 0.f; 00180 i__1 = *nrhs; 00181 for (j = 1; j <= i__1; ++j) { 00182 ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00183 ctrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); 00184 caxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00185 bnorm = scasum_(n, &work[1], &c__1); 00186 xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1); 00187 if (xnorm <= 0.f) { 00188 *resid = 1.f / eps; 00189 } else { 00190 /* Computing MAX */ 00191 r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; 00192 *resid = dmax(r__1,r__2); 00193 } 00194 /* L10: */ 00195 } 00196 00197 return 0; 00198 00199 /* End of CTRT02 */ 00200 00201 } /* ctrt02_ */