00001 /* ctpt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static complex c_b12 = {-1.f,0.f}; 00020 00021 /* Subroutine */ int ctpt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, complex *ap, complex *x, integer *ldx, complex *b, 00023 integer *ldb, complex *work, real *rwork, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 real eps; 00032 extern logical lsame_(char *, char *); 00033 real anorm, bnorm; 00034 extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 00035 complex *, integer *), caxpy_(integer *, complex *, complex *, 00036 integer *, complex *, integer *), ctpmv_(char *, char *, char *, 00037 integer *, complex *, complex *, integer *); 00038 real xnorm; 00039 extern doublereal slamch_(char *), clantp_(char *, char *, char *, 00040 integer *, complex *, real *), scasum_( 00041 integer *, complex *, integer *); 00042 00043 00044 /* -- LAPACK test routine (version 3.1) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* CTPT02 computes the residual for the computed solution to a */ 00057 /* triangular system of linear equations A*x = b, A**T *x = b, or */ 00058 /* A**H *x = b, when the triangular matrix A is stored in packed format. */ 00059 /* Here A**T denotes the transpose of A, A**H denotes the conjugate */ 00060 /* transpose of A, and x and b are N by NRHS matrices. The test ratio */ 00061 /* is the maximum over the number of right hand sides of */ 00062 /* the maximum over the number of right hand sides of */ 00063 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00064 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* UPLO (input) CHARACTER*1 */ 00070 /* Specifies whether the matrix A is upper or lower triangular. */ 00071 /* = 'U': Upper triangular */ 00072 /* = 'L': Lower triangular */ 00073 00074 /* TRANS (input) CHARACTER*1 */ 00075 /* Specifies the operation applied to A. */ 00076 /* = 'N': A *x = b (No transpose) */ 00077 /* = 'T': A**T *x = b (Transpose) */ 00078 /* = 'C': A**H *x = b (Conjugate transpose) */ 00079 00080 /* DIAG (input) CHARACTER*1 */ 00081 /* Specifies whether or not the matrix A is unit triangular. */ 00082 /* = 'N': Non-unit triangular */ 00083 /* = 'U': Unit triangular */ 00084 00085 /* N (input) INTEGER */ 00086 /* The order of the matrix A. N >= 0. */ 00087 00088 /* NRHS (input) INTEGER */ 00089 /* The number of right hand sides, i.e., the number of columns */ 00090 /* of the matrices X and B. NRHS >= 0. */ 00091 00092 /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ 00093 /* The upper or lower triangular matrix A, packed columnwise in */ 00094 /* a linear array. The j-th column of A is stored in the array */ 00095 /* AP as follows: */ 00096 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00097 /* if UPLO = 'L', */ 00098 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00099 00100 /* X (input) COMPLEX array, dimension (LDX,NRHS) */ 00101 /* The computed solution vectors for the system of linear */ 00102 /* equations. */ 00103 00104 /* LDX (input) INTEGER */ 00105 /* The leading dimension of the array X. LDX >= max(1,N). */ 00106 00107 /* B (input) COMPLEX array, dimension (LDB,NRHS) */ 00108 /* The right hand side vectors for the system of linear */ 00109 /* equations. */ 00110 00111 /* LDB (input) INTEGER */ 00112 /* The leading dimension of the array B. LDB >= max(1,N). */ 00113 00114 /* WORK (workspace) COMPLEX array, dimension (N) */ 00115 00116 /* RWORK (workspace) REAL array, dimension (N) */ 00117 00118 /* RESID (output) REAL */ 00119 /* The maximum over the number of right hand sides of */ 00120 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00121 00122 /* ===================================================================== */ 00123 00124 /* .. Parameters .. */ 00125 /* .. */ 00126 /* .. Local Scalars .. */ 00127 /* .. */ 00128 /* .. External Functions .. */ 00129 /* .. */ 00130 /* .. External Subroutines .. */ 00131 /* .. */ 00132 /* .. Intrinsic Functions .. */ 00133 /* .. */ 00134 /* .. Executable Statements .. */ 00135 00136 /* Quick exit if N = 0 or NRHS = 0 */ 00137 00138 /* Parameter adjustments */ 00139 --ap; 00140 x_dim1 = *ldx; 00141 x_offset = 1 + x_dim1; 00142 x -= x_offset; 00143 b_dim1 = *ldb; 00144 b_offset = 1 + b_dim1; 00145 b -= b_offset; 00146 --work; 00147 --rwork; 00148 00149 /* Function Body */ 00150 if (*n <= 0 || *nrhs <= 0) { 00151 *resid = 0.f; 00152 return 0; 00153 } 00154 00155 /* Compute the 1-norm of A or A**H. */ 00156 00157 if (lsame_(trans, "N")) { 00158 anorm = clantp_("1", uplo, diag, n, &ap[1], &rwork[1]); 00159 } else { 00160 anorm = clantp_("I", uplo, diag, n, &ap[1], &rwork[1]); 00161 } 00162 00163 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00164 00165 eps = slamch_("Epsilon"); 00166 if (anorm <= 0.f) { 00167 *resid = 1.f / eps; 00168 return 0; 00169 } 00170 00171 /* Compute the maximum over the number of right hand sides of */ 00172 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00173 00174 *resid = 0.f; 00175 i__1 = *nrhs; 00176 for (j = 1; j <= i__1; ++j) { 00177 ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00178 ctpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1); 00179 caxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00180 bnorm = scasum_(n, &work[1], &c__1); 00181 xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1); 00182 if (xnorm <= 0.f) { 00183 *resid = 1.f / eps; 00184 } else { 00185 /* Computing MAX */ 00186 r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; 00187 *resid = dmax(r__1,r__2); 00188 } 00189 /* L10: */ 00190 } 00191 00192 return 0; 00193 00194 /* End of CTPT02 */ 00195 00196 } /* ctpt02_ */