ctgsna.c
Go to the documentation of this file.
00001 /* ctgsna.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static complex c_b19 = {1.f,0.f};
00020 static complex c_b20 = {0.f,0.f};
00021 static logical c_false = FALSE_;
00022 static integer c__3 = 3;
00023 
00024 /* Subroutine */ int ctgsna_(char *job, char *howmny, logical *select, 
00025         integer *n, complex *a, integer *lda, complex *b, integer *ldb, 
00026         complex *vl, integer *ldvl, complex *vr, integer *ldvr, real *s, real 
00027         *dif, integer *mm, integer *m, complex *work, integer *lwork, integer 
00028         *iwork, integer *info)
00029 {
00030     /* System generated locals */
00031     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
00032             vr_offset, i__1;
00033     real r__1, r__2;
00034     complex q__1;
00035 
00036     /* Builtin functions */
00037     double c_abs(complex *);
00038 
00039     /* Local variables */
00040     integer i__, k, n1, n2, ks;
00041     real eps, cond;
00042     integer ierr, ifst;
00043     real lnrm;
00044     complex yhax, yhbx;
00045     integer ilst;
00046     real rnrm, scale;
00047     extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
00048             *, complex *, integer *);
00049     extern logical lsame_(char *, char *);
00050     extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
00051 , complex *, integer *, complex *, integer *, complex *, complex *
00052 , integer *);
00053     integer lwmin;
00054     logical wants;
00055     complex dummy[1];
00056     extern doublereal scnrm2_(integer *, complex *, integer *), slapy2_(real *
00057 , real *);
00058     complex dummy1[1];
00059     extern /* Subroutine */ int slabad_(real *, real *);
00060     extern doublereal slamch_(char *);
00061     extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
00062             *, integer *, complex *, integer *), ctgexc_(logical *, 
00063             logical *, integer *, complex *, integer *, complex *, integer *, 
00064             complex *, integer *, complex *, integer *, integer *, integer *, 
00065             integer *), xerbla_(char *, integer *);
00066     real bignum;
00067     logical wantbh, wantdf, somcon;
00068     extern /* Subroutine */ int ctgsyl_(char *, integer *, integer *, integer 
00069             *, complex *, integer *, complex *, integer *, complex *, integer 
00070             *, complex *, integer *, complex *, integer *, complex *, integer 
00071             *, real *, real *, complex *, integer *, integer *, integer *);
00072     real smlnum;
00073     logical lquery;
00074 
00075 
00076 /*  -- LAPACK routine (version 3.2) -- */
00077 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00078 /*     November 2006 */
00079 
00080 /*     .. Scalar Arguments .. */
00081 /*     .. */
00082 /*     .. Array Arguments .. */
00083 /*     .. */
00084 
00085 /*  Purpose */
00086 /*  ======= */
00087 
00088 /*  CTGSNA estimates reciprocal condition numbers for specified */
00089 /*  eigenvalues and/or eigenvectors of a matrix pair (A, B). */
00090 
00091 /*  (A, B) must be in generalized Schur canonical form, that is, A and */
00092 /*  B are both upper triangular. */
00093 
00094 /*  Arguments */
00095 /*  ========= */
00096 
00097 /*  JOB     (input) CHARACTER*1 */
00098 /*          Specifies whether condition numbers are required for */
00099 /*          eigenvalues (S) or eigenvectors (DIF): */
00100 /*          = 'E': for eigenvalues only (S); */
00101 /*          = 'V': for eigenvectors only (DIF); */
00102 /*          = 'B': for both eigenvalues and eigenvectors (S and DIF). */
00103 
00104 /*  HOWMNY  (input) CHARACTER*1 */
00105 /*          = 'A': compute condition numbers for all eigenpairs; */
00106 /*          = 'S': compute condition numbers for selected eigenpairs */
00107 /*                 specified by the array SELECT. */
00108 
00109 /*  SELECT  (input) LOGICAL array, dimension (N) */
00110 /*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
00111 /*          condition numbers are required. To select condition numbers */
00112 /*          for the corresponding j-th eigenvalue and/or eigenvector, */
00113 /*          SELECT(j) must be set to .TRUE.. */
00114 /*          If HOWMNY = 'A', SELECT is not referenced. */
00115 
00116 /*  N       (input) INTEGER */
00117 /*          The order of the square matrix pair (A, B). N >= 0. */
00118 
00119 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00120 /*          The upper triangular matrix A in the pair (A,B). */
00121 
00122 /*  LDA     (input) INTEGER */
00123 /*          The leading dimension of the array A. LDA >= max(1,N). */
00124 
00125 /*  B       (input) COMPLEX array, dimension (LDB,N) */
00126 /*          The upper triangular matrix B in the pair (A, B). */
00127 
00128 /*  LDB     (input) INTEGER */
00129 /*          The leading dimension of the array B. LDB >= max(1,N). */
00130 
00131 /*  VL      (input) COMPLEX array, dimension (LDVL,M) */
00132 /*          IF JOB = 'E' or 'B', VL must contain left eigenvectors of */
00133 /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
00134 /*          and SELECT.  The eigenvectors must be stored in consecutive */
00135 /*          columns of VL, as returned by CTGEVC. */
00136 /*          If JOB = 'V', VL is not referenced. */
00137 
00138 /*  LDVL    (input) INTEGER */
00139 /*          The leading dimension of the array VL. LDVL >= 1; and */
00140 /*          If JOB = 'E' or 'B', LDVL >= N. */
00141 
00142 /*  VR      (input) COMPLEX array, dimension (LDVR,M) */
00143 /*          IF JOB = 'E' or 'B', VR must contain right eigenvectors of */
00144 /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
00145 /*          and SELECT.  The eigenvectors must be stored in consecutive */
00146 /*          columns of VR, as returned by CTGEVC. */
00147 /*          If JOB = 'V', VR is not referenced. */
00148 
00149 /*  LDVR    (input) INTEGER */
00150 /*          The leading dimension of the array VR. LDVR >= 1; */
00151 /*          If JOB = 'E' or 'B', LDVR >= N. */
00152 
00153 /*  S       (output) REAL array, dimension (MM) */
00154 /*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
00155 /*          selected eigenvalues, stored in consecutive elements of the */
00156 /*          array. */
00157 /*          If JOB = 'V', S is not referenced. */
00158 
00159 /*  DIF     (output) REAL array, dimension (MM) */
00160 /*          If JOB = 'V' or 'B', the estimated reciprocal condition */
00161 /*          numbers of the selected eigenvectors, stored in consecutive */
00162 /*          elements of the array. */
00163 /*          If the eigenvalues cannot be reordered to compute DIF(j), */
00164 /*          DIF(j) is set to 0; this can only occur when the true value */
00165 /*          would be very small anyway. */
00166 /*          For each eigenvalue/vector specified by SELECT, DIF stores */
00167 /*          a Frobenius norm-based estimate of Difl. */
00168 /*          If JOB = 'E', DIF is not referenced. */
00169 
00170 /*  MM      (input) INTEGER */
00171 /*          The number of elements in the arrays S and DIF. MM >= M. */
00172 
00173 /*  M       (output) INTEGER */
00174 /*          The number of elements of the arrays S and DIF used to store */
00175 /*          the specified condition numbers; for each selected eigenvalue */
00176 /*          one element is used. If HOWMNY = 'A', M is set to N. */
00177 
00178 /*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
00179 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00180 
00181 /*  LWORK  (input) INTEGER */
00182 /*          The dimension of the array WORK. LWORK >= max(1,N). */
00183 /*          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N). */
00184 
00185 /*  IWORK   (workspace) INTEGER array, dimension (N+2) */
00186 /*          If JOB = 'E', IWORK is not referenced. */
00187 
00188 /*  INFO    (output) INTEGER */
00189 /*          = 0: Successful exit */
00190 /*          < 0: If INFO = -i, the i-th argument had an illegal value */
00191 
00192 /*  Further Details */
00193 /*  =============== */
00194 
00195 /*  The reciprocal of the condition number of the i-th generalized */
00196 /*  eigenvalue w = (a, b) is defined as */
00197 
00198 /*          S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v)) */
00199 
00200 /*  where u and v are the right and left eigenvectors of (A, B) */
00201 /*  corresponding to w; |z| denotes the absolute value of the complex */
00202 /*  number, and norm(u) denotes the 2-norm of the vector u. The pair */
00203 /*  (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the */
00204 /*  matrix pair (A, B). If both a and b equal zero, then (A,B) is */
00205 /*  singular and S(I) = -1 is returned. */
00206 
00207 /*  An approximate error bound on the chordal distance between the i-th */
00208 /*  computed generalized eigenvalue w and the corresponding exact */
00209 /*  eigenvalue lambda is */
00210 
00211 /*          chord(w, lambda) <=   EPS * norm(A, B) / S(I), */
00212 
00213 /*  where EPS is the machine precision. */
00214 
00215 /*  The reciprocal of the condition number of the right eigenvector u */
00216 /*  and left eigenvector v corresponding to the generalized eigenvalue w */
00217 /*  is defined as follows. Suppose */
00218 
00219 /*                   (A, B) = ( a   *  ) ( b  *  )  1 */
00220 /*                            ( 0  A22 ),( 0 B22 )  n-1 */
00221 /*                              1  n-1     1 n-1 */
00222 
00223 /*  Then the reciprocal condition number DIF(I) is */
00224 
00225 /*          Difl[(a, b), (A22, B22)]  = sigma-min( Zl ) */
00226 
00227 /*  where sigma-min(Zl) denotes the smallest singular value of */
00228 
00229 /*         Zl = [ kron(a, In-1) -kron(1, A22) ] */
00230 /*              [ kron(b, In-1) -kron(1, B22) ]. */
00231 
00232 /*  Here In-1 is the identity matrix of size n-1 and X' is the conjugate */
00233 /*  transpose of X. kron(X, Y) is the Kronecker product between the */
00234 /*  matrices X and Y. */
00235 
00236 /*  We approximate the smallest singular value of Zl with an upper */
00237 /*  bound. This is done by CLATDF. */
00238 
00239 /*  An approximate error bound for a computed eigenvector VL(i) or */
00240 /*  VR(i) is given by */
00241 
00242 /*                      EPS * norm(A, B) / DIF(i). */
00243 
00244 /*  See ref. [2-3] for more details and further references. */
00245 
00246 /*  Based on contributions by */
00247 /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
00248 /*     Umea University, S-901 87 Umea, Sweden. */
00249 
00250 /*  References */
00251 /*  ========== */
00252 
00253 /*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
00254 /*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
00255 /*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
00256 /*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
00257 
00258 /*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
00259 /*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
00260 /*      Estimation: Theory, Algorithms and Software, Report */
00261 /*      UMINF - 94.04, Department of Computing Science, Umea University, */
00262 /*      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
00263 /*      To appear in Numerical Algorithms, 1996. */
00264 
00265 /*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
00266 /*      for Solving the Generalized Sylvester Equation and Estimating the */
00267 /*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
00268 /*      Department of Computing Science, Umea University, S-901 87 Umea, */
00269 /*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
00270 /*      Note 75. */
00271 /*      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. */
00272 
00273 /*  ===================================================================== */
00274 
00275 /*     .. Parameters .. */
00276 /*     .. */
00277 /*     .. Local Scalars .. */
00278 /*     .. */
00279 /*     .. Local Arrays .. */
00280 /*     .. */
00281 /*     .. External Functions .. */
00282 /*     .. */
00283 /*     .. External Subroutines .. */
00284 /*     .. */
00285 /*     .. Intrinsic Functions .. */
00286 /*     .. */
00287 /*     .. Executable Statements .. */
00288 
00289 /*     Decode and test the input parameters */
00290 
00291     /* Parameter adjustments */
00292     --select;
00293     a_dim1 = *lda;
00294     a_offset = 1 + a_dim1;
00295     a -= a_offset;
00296     b_dim1 = *ldb;
00297     b_offset = 1 + b_dim1;
00298     b -= b_offset;
00299     vl_dim1 = *ldvl;
00300     vl_offset = 1 + vl_dim1;
00301     vl -= vl_offset;
00302     vr_dim1 = *ldvr;
00303     vr_offset = 1 + vr_dim1;
00304     vr -= vr_offset;
00305     --s;
00306     --dif;
00307     --work;
00308     --iwork;
00309 
00310     /* Function Body */
00311     wantbh = lsame_(job, "B");
00312     wants = lsame_(job, "E") || wantbh;
00313     wantdf = lsame_(job, "V") || wantbh;
00314 
00315     somcon = lsame_(howmny, "S");
00316 
00317     *info = 0;
00318     lquery = *lwork == -1;
00319 
00320     if (! wants && ! wantdf) {
00321         *info = -1;
00322     } else if (! lsame_(howmny, "A") && ! somcon) {
00323         *info = -2;
00324     } else if (*n < 0) {
00325         *info = -4;
00326     } else if (*lda < max(1,*n)) {
00327         *info = -6;
00328     } else if (*ldb < max(1,*n)) {
00329         *info = -8;
00330     } else if (wants && *ldvl < *n) {
00331         *info = -10;
00332     } else if (wants && *ldvr < *n) {
00333         *info = -12;
00334     } else {
00335 
00336 /*        Set M to the number of eigenpairs for which condition numbers */
00337 /*        are required, and test MM. */
00338 
00339         if (somcon) {
00340             *m = 0;
00341             i__1 = *n;
00342             for (k = 1; k <= i__1; ++k) {
00343                 if (select[k]) {
00344                     ++(*m);
00345                 }
00346 /* L10: */
00347             }
00348         } else {
00349             *m = *n;
00350         }
00351 
00352         if (*n == 0) {
00353             lwmin = 1;
00354         } else if (lsame_(job, "V") || lsame_(job, 
00355                 "B")) {
00356             lwmin = (*n << 1) * *n;
00357         } else {
00358             lwmin = *n;
00359         }
00360         work[1].r = (real) lwmin, work[1].i = 0.f;
00361 
00362         if (*mm < *m) {
00363             *info = -15;
00364         } else if (*lwork < lwmin && ! lquery) {
00365             *info = -18;
00366         }
00367     }
00368 
00369     if (*info != 0) {
00370         i__1 = -(*info);
00371         xerbla_("CTGSNA", &i__1);
00372         return 0;
00373     } else if (lquery) {
00374         return 0;
00375     }
00376 
00377 /*     Quick return if possible */
00378 
00379     if (*n == 0) {
00380         return 0;
00381     }
00382 
00383 /*     Get machine constants */
00384 
00385     eps = slamch_("P");
00386     smlnum = slamch_("S") / eps;
00387     bignum = 1.f / smlnum;
00388     slabad_(&smlnum, &bignum);
00389     ks = 0;
00390     i__1 = *n;
00391     for (k = 1; k <= i__1; ++k) {
00392 
00393 /*        Determine whether condition numbers are required for the k-th */
00394 /*        eigenpair. */
00395 
00396         if (somcon) {
00397             if (! select[k]) {
00398                 goto L20;
00399             }
00400         }
00401 
00402         ++ks;
00403 
00404         if (wants) {
00405 
00406 /*           Compute the reciprocal condition number of the k-th */
00407 /*           eigenvalue. */
00408 
00409             rnrm = scnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
00410             lnrm = scnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
00411             cgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + 1]
00412 , &c__1, &c_b20, &work[1], &c__1);
00413             cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
00414             yhax.r = q__1.r, yhax.i = q__1.i;
00415             cgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + 1]
00416 , &c__1, &c_b20, &work[1], &c__1);
00417             cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
00418             yhbx.r = q__1.r, yhbx.i = q__1.i;
00419             r__1 = c_abs(&yhax);
00420             r__2 = c_abs(&yhbx);
00421             cond = slapy2_(&r__1, &r__2);
00422             if (cond == 0.f) {
00423                 s[ks] = -1.f;
00424             } else {
00425                 s[ks] = cond / (rnrm * lnrm);
00426             }
00427         }
00428 
00429         if (wantdf) {
00430             if (*n == 1) {
00431                 r__1 = c_abs(&a[a_dim1 + 1]);
00432                 r__2 = c_abs(&b[b_dim1 + 1]);
00433                 dif[ks] = slapy2_(&r__1, &r__2);
00434             } else {
00435 
00436 /*              Estimate the reciprocal condition number of the k-th */
00437 /*              eigenvectors. */
00438 
00439 /*              Copy the matrix (A, B) to the array WORK and move the */
00440 /*              (k,k)th pair to the (1,1) position. */
00441 
00442                 clacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
00443                 clacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], 
00444                         n);
00445                 ifst = k;
00446                 ilst = 1;
00447 
00448                 ctgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1]
00449 , n, dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &ierr)
00450                         ;
00451 
00452                 if (ierr > 0) {
00453 
00454 /*                 Ill-conditioned problem - swap rejected. */
00455 
00456                     dif[ks] = 0.f;
00457                 } else {
00458 
00459 /*                 Reordering successful, solve generalized Sylvester */
00460 /*                 equation for R and L, */
00461 /*                            A22 * R - L * A11 = A12 */
00462 /*                            B22 * R - L * B11 = B12, */
00463 /*                 and compute estimate of Difl[(A11,B11), (A22, B22)]. */
00464 
00465                     n1 = 1;
00466                     n2 = *n - n1;
00467                     i__ = *n * *n + 1;
00468                     ctgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, 
00469                             &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 
00470                             + i__], n, &work[i__], n, &work[n1 + i__], n, &
00471                             scale, &dif[ks], dummy, &c__1, &iwork[1], &ierr);
00472                 }
00473             }
00474         }
00475 
00476 L20:
00477         ;
00478     }
00479     work[1].r = (real) lwmin, work[1].i = 0.f;
00480     return 0;
00481 
00482 /*     End of CTGSNA */
00483 
00484 } /* ctgsna_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:34