00001 /* ctbtrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ctbtrs_(char *uplo, char *trans, char *diag, integer *n, 00021 integer *kd, integer *nrhs, complex *ab, integer *ldab, complex *b, 00022 integer *ldb, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2; 00026 00027 /* Local variables */ 00028 integer j; 00029 extern logical lsame_(char *, char *); 00030 extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *, 00031 integer *, complex *, integer *, complex *, integer *); 00032 logical upper; 00033 extern /* Subroutine */ int xerbla_(char *, integer *); 00034 logical nounit; 00035 00036 00037 /* -- LAPACK routine (version 3.2) -- */ 00038 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00039 /* November 2006 */ 00040 00041 /* .. Scalar Arguments .. */ 00042 /* .. */ 00043 /* .. Array Arguments .. */ 00044 /* .. */ 00045 00046 /* Purpose */ 00047 /* ======= */ 00048 00049 /* CTBTRS solves a triangular system of the form */ 00050 00051 /* A * X = B, A**T * X = B, or A**H * X = B, */ 00052 00053 /* where A is a triangular band matrix of order N, and B is an */ 00054 /* N-by-NRHS matrix. A check is made to verify that A is nonsingular. */ 00055 00056 /* Arguments */ 00057 /* ========= */ 00058 00059 /* UPLO (input) CHARACTER*1 */ 00060 /* = 'U': A is upper triangular; */ 00061 /* = 'L': A is lower triangular. */ 00062 00063 /* TRANS (input) CHARACTER*1 */ 00064 /* Specifies the form of the system of equations: */ 00065 /* = 'N': A * X = B (No transpose) */ 00066 /* = 'T': A**T * X = B (Transpose) */ 00067 /* = 'C': A**H * X = B (Conjugate transpose) */ 00068 00069 /* DIAG (input) CHARACTER*1 */ 00070 /* = 'N': A is non-unit triangular; */ 00071 /* = 'U': A is unit triangular. */ 00072 00073 /* N (input) INTEGER */ 00074 /* The order of the matrix A. N >= 0. */ 00075 00076 /* KD (input) INTEGER */ 00077 /* The number of superdiagonals or subdiagonals of the */ 00078 /* triangular band matrix A. KD >= 0. */ 00079 00080 /* NRHS (input) INTEGER */ 00081 /* The number of right hand sides, i.e., the number of columns */ 00082 /* of the matrix B. NRHS >= 0. */ 00083 00084 /* AB (input) COMPLEX array, dimension (LDAB,N) */ 00085 /* The upper or lower triangular band matrix A, stored in the */ 00086 /* first kd+1 rows of AB. The j-th column of A is stored */ 00087 /* in the j-th column of the array AB as follows: */ 00088 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00089 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00090 /* If DIAG = 'U', the diagonal elements of A are not referenced */ 00091 /* and are assumed to be 1. */ 00092 00093 /* LDAB (input) INTEGER */ 00094 /* The leading dimension of the array AB. LDAB >= KD+1. */ 00095 00096 /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ 00097 /* On entry, the right hand side matrix B. */ 00098 /* On exit, if INFO = 0, the solution matrix X. */ 00099 00100 /* LDB (input) INTEGER */ 00101 /* The leading dimension of the array B. LDB >= max(1,N). */ 00102 00103 /* INFO (output) INTEGER */ 00104 /* = 0: successful exit */ 00105 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00106 /* > 0: if INFO = i, the i-th diagonal element of A is zero, */ 00107 /* indicating that the matrix is singular and the */ 00108 /* solutions X have not been computed. */ 00109 00110 /* ===================================================================== */ 00111 00112 /* .. Parameters .. */ 00113 /* .. */ 00114 /* .. Local Scalars .. */ 00115 /* .. */ 00116 /* .. External Functions .. */ 00117 /* .. */ 00118 /* .. External Subroutines .. */ 00119 /* .. */ 00120 /* .. Intrinsic Functions .. */ 00121 /* .. */ 00122 /* .. Executable Statements .. */ 00123 00124 /* Test the input parameters. */ 00125 00126 /* Parameter adjustments */ 00127 ab_dim1 = *ldab; 00128 ab_offset = 1 + ab_dim1; 00129 ab -= ab_offset; 00130 b_dim1 = *ldb; 00131 b_offset = 1 + b_dim1; 00132 b -= b_offset; 00133 00134 /* Function Body */ 00135 *info = 0; 00136 nounit = lsame_(diag, "N"); 00137 upper = lsame_(uplo, "U"); 00138 if (! upper && ! lsame_(uplo, "L")) { 00139 *info = -1; 00140 } else if (! lsame_(trans, "N") && ! lsame_(trans, 00141 "T") && ! lsame_(trans, "C")) { 00142 *info = -2; 00143 } else if (! nounit && ! lsame_(diag, "U")) { 00144 *info = -3; 00145 } else if (*n < 0) { 00146 *info = -4; 00147 } else if (*kd < 0) { 00148 *info = -5; 00149 } else if (*nrhs < 0) { 00150 *info = -6; 00151 } else if (*ldab < *kd + 1) { 00152 *info = -8; 00153 } else if (*ldb < max(1,*n)) { 00154 *info = -10; 00155 } 00156 if (*info != 0) { 00157 i__1 = -(*info); 00158 xerbla_("CTBTRS", &i__1); 00159 return 0; 00160 } 00161 00162 /* Quick return if possible */ 00163 00164 if (*n == 0) { 00165 return 0; 00166 } 00167 00168 /* Check for singularity. */ 00169 00170 if (nounit) { 00171 if (upper) { 00172 i__1 = *n; 00173 for (*info = 1; *info <= i__1; ++(*info)) { 00174 i__2 = *kd + 1 + *info * ab_dim1; 00175 if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) { 00176 return 0; 00177 } 00178 /* L10: */ 00179 } 00180 } else { 00181 i__1 = *n; 00182 for (*info = 1; *info <= i__1; ++(*info)) { 00183 i__2 = *info * ab_dim1 + 1; 00184 if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) { 00185 return 0; 00186 } 00187 /* L20: */ 00188 } 00189 } 00190 } 00191 *info = 0; 00192 00193 /* Solve A * X = B, A**T * X = B, or A**H * X = B. */ 00194 00195 i__1 = *nrhs; 00196 for (j = 1; j <= i__1; ++j) { 00197 ctbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1 00198 + 1], &c__1); 00199 /* L30: */ 00200 } 00201 00202 return 0; 00203 00204 /* End of CTBTRS */ 00205 00206 } /* ctbtrs_ */