csyrfs.c
Go to the documentation of this file.
00001 /* csyrfs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {1.f,0.f};
00019 static integer c__1 = 1;
00020 
00021 /* Subroutine */ int csyrfs_(char *uplo, integer *n, integer *nrhs, complex *
00022         a, integer *lda, complex *af, integer *ldaf, integer *ipiv, complex *
00023         b, integer *ldb, complex *x, integer *ldx, real *ferr, real *berr, 
00024         complex *work, real *rwork, integer *info)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
00028             x_offset, i__1, i__2, i__3, i__4, i__5;
00029     real r__1, r__2, r__3, r__4;
00030     complex q__1;
00031 
00032     /* Builtin functions */
00033     double r_imag(complex *);
00034 
00035     /* Local variables */
00036     integer i__, j, k;
00037     real s, xk;
00038     integer nz;
00039     real eps;
00040     integer kase;
00041     real safe1, safe2;
00042     extern logical lsame_(char *, char *);
00043     integer isave[3];
00044     extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
00045             complex *, integer *), caxpy_(integer *, complex *, complex *, 
00046             integer *, complex *, integer *);
00047     integer count;
00048     logical upper;
00049     extern /* Subroutine */ int csymv_(char *, integer *, complex *, complex *
00050 , integer *, complex *, integer *, complex *, complex *, integer *
00051 ), clacn2_(integer *, complex *, complex *, real *, 
00052             integer *, integer *);
00053     extern doublereal slamch_(char *);
00054     real safmin;
00055     extern /* Subroutine */ int xerbla_(char *, integer *);
00056     real lstres;
00057     extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex 
00058             *, integer *, integer *, complex *, integer *, integer *);
00059 
00060 
00061 /*  -- LAPACK routine (version 3.2) -- */
00062 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00063 /*     November 2006 */
00064 
00065 /*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
00066 
00067 /*     .. Scalar Arguments .. */
00068 /*     .. */
00069 /*     .. Array Arguments .. */
00070 /*     .. */
00071 
00072 /*  Purpose */
00073 /*  ======= */
00074 
00075 /*  CSYRFS improves the computed solution to a system of linear */
00076 /*  equations when the coefficient matrix is symmetric indefinite, and */
00077 /*  provides error bounds and backward error estimates for the solution. */
00078 
00079 /*  Arguments */
00080 /*  ========= */
00081 
00082 /*  UPLO    (input) CHARACTER*1 */
00083 /*          = 'U':  Upper triangle of A is stored; */
00084 /*          = 'L':  Lower triangle of A is stored. */
00085 
00086 /*  N       (input) INTEGER */
00087 /*          The order of the matrix A.  N >= 0. */
00088 
00089 /*  NRHS    (input) INTEGER */
00090 /*          The number of right hand sides, i.e., the number of columns */
00091 /*          of the matrices B and X.  NRHS >= 0. */
00092 
00093 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00094 /*          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N */
00095 /*          upper triangular part of A contains the upper triangular part */
00096 /*          of the matrix A, and the strictly lower triangular part of A */
00097 /*          is not referenced.  If UPLO = 'L', the leading N-by-N lower */
00098 /*          triangular part of A contains the lower triangular part of */
00099 /*          the matrix A, and the strictly upper triangular part of A is */
00100 /*          not referenced. */
00101 
00102 /*  LDA     (input) INTEGER */
00103 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00104 
00105 /*  AF      (input) COMPLEX array, dimension (LDAF,N) */
00106 /*          The factored form of the matrix A.  AF contains the block */
00107 /*          diagonal matrix D and the multipliers used to obtain the */
00108 /*          factor U or L from the factorization A = U*D*U**T or */
00109 /*          A = L*D*L**T as computed by CSYTRF. */
00110 
00111 /*  LDAF    (input) INTEGER */
00112 /*          The leading dimension of the array AF.  LDAF >= max(1,N). */
00113 
00114 /*  IPIV    (input) INTEGER array, dimension (N) */
00115 /*          Details of the interchanges and the block structure of D */
00116 /*          as determined by CSYTRF. */
00117 
00118 /*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
00119 /*          The right hand side matrix B. */
00120 
00121 /*  LDB     (input) INTEGER */
00122 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00123 
00124 /*  X       (input/output) COMPLEX array, dimension (LDX,NRHS) */
00125 /*          On entry, the solution matrix X, as computed by CSYTRS. */
00126 /*          On exit, the improved solution matrix X. */
00127 
00128 /*  LDX     (input) INTEGER */
00129 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00130 
00131 /*  FERR    (output) REAL array, dimension (NRHS) */
00132 /*          The estimated forward error bound for each solution vector */
00133 /*          X(j) (the j-th column of the solution matrix X). */
00134 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
00135 /*          is an estimated upper bound for the magnitude of the largest */
00136 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
00137 /*          largest element in X(j).  The estimate is as reliable as */
00138 /*          the estimate for RCOND, and is almost always a slight */
00139 /*          overestimate of the true error. */
00140 
00141 /*  BERR    (output) REAL array, dimension (NRHS) */
00142 /*          The componentwise relative backward error of each solution */
00143 /*          vector X(j) (i.e., the smallest relative change in */
00144 /*          any element of A or B that makes X(j) an exact solution). */
00145 
00146 /*  WORK    (workspace) COMPLEX array, dimension (2*N) */
00147 
00148 /*  RWORK   (workspace) REAL array, dimension (N) */
00149 
00150 /*  INFO    (output) INTEGER */
00151 /*          = 0:  successful exit */
00152 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00153 
00154 /*  Internal Parameters */
00155 /*  =================== */
00156 
00157 /*  ITMAX is the maximum number of steps of iterative refinement. */
00158 
00159 /*  ===================================================================== */
00160 
00161 /*     .. Parameters .. */
00162 /*     .. */
00163 /*     .. Local Scalars .. */
00164 /*     .. */
00165 /*     .. Local Arrays .. */
00166 /*     .. */
00167 /*     .. External Subroutines .. */
00168 /*     .. */
00169 /*     .. Intrinsic Functions .. */
00170 /*     .. */
00171 /*     .. External Functions .. */
00172 /*     .. */
00173 /*     .. Statement Functions .. */
00174 /*     .. */
00175 /*     .. Statement Function definitions .. */
00176 /*     .. */
00177 /*     .. Executable Statements .. */
00178 
00179 /*     Test the input parameters. */
00180 
00181     /* Parameter adjustments */
00182     a_dim1 = *lda;
00183     a_offset = 1 + a_dim1;
00184     a -= a_offset;
00185     af_dim1 = *ldaf;
00186     af_offset = 1 + af_dim1;
00187     af -= af_offset;
00188     --ipiv;
00189     b_dim1 = *ldb;
00190     b_offset = 1 + b_dim1;
00191     b -= b_offset;
00192     x_dim1 = *ldx;
00193     x_offset = 1 + x_dim1;
00194     x -= x_offset;
00195     --ferr;
00196     --berr;
00197     --work;
00198     --rwork;
00199 
00200     /* Function Body */
00201     *info = 0;
00202     upper = lsame_(uplo, "U");
00203     if (! upper && ! lsame_(uplo, "L")) {
00204         *info = -1;
00205     } else if (*n < 0) {
00206         *info = -2;
00207     } else if (*nrhs < 0) {
00208         *info = -3;
00209     } else if (*lda < max(1,*n)) {
00210         *info = -5;
00211     } else if (*ldaf < max(1,*n)) {
00212         *info = -7;
00213     } else if (*ldb < max(1,*n)) {
00214         *info = -10;
00215     } else if (*ldx < max(1,*n)) {
00216         *info = -12;
00217     }
00218     if (*info != 0) {
00219         i__1 = -(*info);
00220         xerbla_("CSYRFS", &i__1);
00221         return 0;
00222     }
00223 
00224 /*     Quick return if possible */
00225 
00226     if (*n == 0 || *nrhs == 0) {
00227         i__1 = *nrhs;
00228         for (j = 1; j <= i__1; ++j) {
00229             ferr[j] = 0.f;
00230             berr[j] = 0.f;
00231 /* L10: */
00232         }
00233         return 0;
00234     }
00235 
00236 /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
00237 
00238     nz = *n + 1;
00239     eps = slamch_("Epsilon");
00240     safmin = slamch_("Safe minimum");
00241     safe1 = nz * safmin;
00242     safe2 = safe1 / eps;
00243 
00244 /*     Do for each right hand side */
00245 
00246     i__1 = *nrhs;
00247     for (j = 1; j <= i__1; ++j) {
00248 
00249         count = 1;
00250         lstres = 3.f;
00251 L20:
00252 
00253 /*        Loop until stopping criterion is satisfied. */
00254 
00255 /*        Compute residual R = B - A * X */
00256 
00257         ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00258         q__1.r = -1.f, q__1.i = -0.f;
00259         csymv_(uplo, n, &q__1, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, &
00260                 c_b1, &work[1], &c__1);
00261 
00262 /*        Compute componentwise relative backward error from formula */
00263 
00264 /*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
00265 
00266 /*        where abs(Z) is the componentwise absolute value of the matrix */
00267 /*        or vector Z.  If the i-th component of the denominator is less */
00268 /*        than SAFE2, then SAFE1 is added to the i-th components of the */
00269 /*        numerator and denominator before dividing. */
00270 
00271         i__2 = *n;
00272         for (i__ = 1; i__ <= i__2; ++i__) {
00273             i__3 = i__ + j * b_dim1;
00274             rwork[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[
00275                     i__ + j * b_dim1]), dabs(r__2));
00276 /* L30: */
00277         }
00278 
00279 /*        Compute abs(A)*abs(X) + abs(B). */
00280 
00281         if (upper) {
00282             i__2 = *n;
00283             for (k = 1; k <= i__2; ++k) {
00284                 s = 0.f;
00285                 i__3 = k + j * x_dim1;
00286                 xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
00287                         * x_dim1]), dabs(r__2));
00288                 i__3 = k - 1;
00289                 for (i__ = 1; i__ <= i__3; ++i__) {
00290                     i__4 = i__ + k * a_dim1;
00291                     rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = 
00292                             r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk;
00293                     i__4 = i__ + k * a_dim1;
00294                     i__5 = i__ + j * x_dim1;
00295                     s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[
00296                             i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[
00297                             i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j *
00298                              x_dim1]), dabs(r__4)));
00299 /* L40: */
00300                 }
00301                 i__3 = k + k * a_dim1;
00302                 rwork[k] = rwork[k] + ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 
00303                         = r_imag(&a[k + k * a_dim1]), dabs(r__2))) * xk + s;
00304 /* L50: */
00305             }
00306         } else {
00307             i__2 = *n;
00308             for (k = 1; k <= i__2; ++k) {
00309                 s = 0.f;
00310                 i__3 = k + j * x_dim1;
00311                 xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
00312                         * x_dim1]), dabs(r__2));
00313                 i__3 = k + k * a_dim1;
00314                 rwork[k] += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&
00315                         a[k + k * a_dim1]), dabs(r__2))) * xk;
00316                 i__3 = *n;
00317                 for (i__ = k + 1; i__ <= i__3; ++i__) {
00318                     i__4 = i__ + k * a_dim1;
00319                     rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = 
00320                             r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk;
00321                     i__4 = i__ + k * a_dim1;
00322                     i__5 = i__ + j * x_dim1;
00323                     s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[
00324                             i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[
00325                             i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j *
00326                              x_dim1]), dabs(r__4)));
00327 /* L60: */
00328                 }
00329                 rwork[k] += s;
00330 /* L70: */
00331             }
00332         }
00333         s = 0.f;
00334         i__2 = *n;
00335         for (i__ = 1; i__ <= i__2; ++i__) {
00336             if (rwork[i__] > safe2) {
00337 /* Computing MAX */
00338                 i__3 = i__;
00339                 r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00340                         r_imag(&work[i__]), dabs(r__2))) / rwork[i__];
00341                 s = dmax(r__3,r__4);
00342             } else {
00343 /* Computing MAX */
00344                 i__3 = i__;
00345                 r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00346                         r_imag(&work[i__]), dabs(r__2)) + safe1) / (rwork[i__]
00347                          + safe1);
00348                 s = dmax(r__3,r__4);
00349             }
00350 /* L80: */
00351         }
00352         berr[j] = s;
00353 
00354 /*        Test stopping criterion. Continue iterating if */
00355 /*           1) The residual BERR(J) is larger than machine epsilon, and */
00356 /*           2) BERR(J) decreased by at least a factor of 2 during the */
00357 /*              last iteration, and */
00358 /*           3) At most ITMAX iterations tried. */
00359 
00360         if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
00361 
00362 /*           Update solution and try again. */
00363 
00364             csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], 
00365                     n, info);
00366             caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
00367             lstres = berr[j];
00368             ++count;
00369             goto L20;
00370         }
00371 
00372 /*        Bound error from formula */
00373 
00374 /*        norm(X - XTRUE) / norm(X) .le. FERR = */
00375 /*        norm( abs(inv(A))* */
00376 /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
00377 
00378 /*        where */
00379 /*          norm(Z) is the magnitude of the largest component of Z */
00380 /*          inv(A) is the inverse of A */
00381 /*          abs(Z) is the componentwise absolute value of the matrix or */
00382 /*             vector Z */
00383 /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
00384 /*          EPS is machine epsilon */
00385 
00386 /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
00387 /*        is incremented by SAFE1 if the i-th component of */
00388 /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
00389 
00390 /*        Use CLACN2 to estimate the infinity-norm of the matrix */
00391 /*           inv(A) * diag(W), */
00392 /*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
00393 
00394         i__2 = *n;
00395         for (i__ = 1; i__ <= i__2; ++i__) {
00396             if (rwork[i__] > safe2) {
00397                 i__3 = i__;
00398                 rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00399                         r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
00400                         i__];
00401             } else {
00402                 i__3 = i__;
00403                 rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00404                         r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
00405                         i__] + safe1;
00406             }
00407 /* L90: */
00408         }
00409 
00410         kase = 0;
00411 L100:
00412         clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
00413         if (kase != 0) {
00414             if (kase == 1) {
00415 
00416 /*              Multiply by diag(W)*inv(A'). */
00417 
00418                 csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
00419                         1], n, info);
00420                 i__2 = *n;
00421                 for (i__ = 1; i__ <= i__2; ++i__) {
00422                     i__3 = i__;
00423                     i__4 = i__;
00424                     i__5 = i__;
00425                     q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
00426                             * work[i__5].i;
00427                     work[i__3].r = q__1.r, work[i__3].i = q__1.i;
00428 /* L110: */
00429                 }
00430             } else if (kase == 2) {
00431 
00432 /*              Multiply by inv(A)*diag(W). */
00433 
00434                 i__2 = *n;
00435                 for (i__ = 1; i__ <= i__2; ++i__) {
00436                     i__3 = i__;
00437                     i__4 = i__;
00438                     i__5 = i__;
00439                     q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
00440                             * work[i__5].i;
00441                     work[i__3].r = q__1.r, work[i__3].i = q__1.i;
00442 /* L120: */
00443                 }
00444                 csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
00445                         1], n, info);
00446             }
00447             goto L100;
00448         }
00449 
00450 /*        Normalize error. */
00451 
00452         lstres = 0.f;
00453         i__2 = *n;
00454         for (i__ = 1; i__ <= i__2; ++i__) {
00455 /* Computing MAX */
00456             i__3 = i__ + j * x_dim1;
00457             r__3 = lstres, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
00458                     r_imag(&x[i__ + j * x_dim1]), dabs(r__2));
00459             lstres = dmax(r__3,r__4);
00460 /* L130: */
00461         }
00462         if (lstres != 0.f) {
00463             ferr[j] /= lstres;
00464         }
00465 
00466 /* L140: */
00467     }
00468 
00469     return 0;
00470 
00471 /*     End of CSYRFS */
00472 
00473 } /* csyrfs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:34