crqt02.c
Go to the documentation of this file.
00001 /* crqt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static complex c_b1 = {-1e10f,-1e10f};
00027 static complex c_b9 = {0.f,0.f};
00028 static complex c_b14 = {-1.f,0.f};
00029 static complex c_b15 = {1.f,0.f};
00030 static real c_b23 = -1.f;
00031 static real c_b24 = 1.f;
00032 
00033 /* Subroutine */ int crqt02_(integer *m, integer *n, integer *k, complex *a, 
00034         complex *af, complex *q, complex *r__, integer *lda, complex *tau, 
00035         complex *work, integer *lwork, real *rwork, real *result)
00036 {
00037     /* System generated locals */
00038     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00039             r_offset, i__1, i__2;
00040 
00041     /* Builtin functions */
00042     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00043 
00044     /* Local variables */
00045     real eps;
00046     integer info;
00047     extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
00048             integer *, complex *, complex *, integer *, complex *, integer *, 
00049             complex *, complex *, integer *), cherk_(char *, 
00050             char *, integer *, integer *, real *, complex *, integer *, real *
00051 , complex *, integer *);
00052     real resid, anorm;
00053     extern doublereal clange_(char *, integer *, integer *, complex *, 
00054             integer *, real *), slamch_(char *);
00055     extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
00056             *, integer *, complex *, integer *), claset_(char *, 
00057             integer *, integer *, complex *, complex *, complex *, integer *);
00058     extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
00059              real *);
00060     extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, 
00061             complex *, integer *, complex *, complex *, integer *, integer *);
00062 
00063 
00064 /*  -- LAPACK test routine (version 3.1) -- */
00065 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00066 /*     November 2006 */
00067 
00068 /*     .. Scalar Arguments .. */
00069 /*     .. */
00070 /*     .. Array Arguments .. */
00071 /*     .. */
00072 
00073 /*  Purpose */
00074 /*  ======= */
00075 
00076 /*  CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with */
00077 /*  orthonornmal rows that is defined as the product of k elementary */
00078 /*  reflectors. */
00079 
00080 /*  Given the RQ factorization of an m-by-n matrix A, CRQT02 generates */
00081 /*  the orthogonal matrix Q defined by the factorization of the last k */
00082 /*  rows of A; it compares R(m-k+1:m,n-m+1:n) with */
00083 /*  A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are */
00084 /*  orthonormal. */
00085 
00086 /*  Arguments */
00087 /*  ========= */
00088 
00089 /*  M       (input) INTEGER */
00090 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00091 
00092 /*  N       (input) INTEGER */
00093 /*          The number of columns of the matrix Q to be generated. */
00094 /*          N >= M >= 0. */
00095 
00096 /*  K       (input) INTEGER */
00097 /*          The number of elementary reflectors whose product defines the */
00098 /*          matrix Q. M >= K >= 0. */
00099 
00100 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00101 /*          The m-by-n matrix A which was factorized by CRQT01. */
00102 
00103 /*  AF      (input) COMPLEX array, dimension (LDA,N) */
00104 /*          Details of the RQ factorization of A, as returned by CGERQF. */
00105 /*          See CGERQF for further details. */
00106 
00107 /*  Q       (workspace) COMPLEX array, dimension (LDA,N) */
00108 
00109 /*  R       (workspace) COMPLEX array, dimension (LDA,M) */
00110 
00111 /*  LDA     (input) INTEGER */
00112 /*          The leading dimension of the arrays A, AF, Q and L. LDA >= N. */
00113 
00114 /*  TAU     (input) COMPLEX array, dimension (M) */
00115 /*          The scalar factors of the elementary reflectors corresponding */
00116 /*          to the RQ factorization in AF. */
00117 
00118 /*  WORK    (workspace) COMPLEX array, dimension (LWORK) */
00119 
00120 /*  LWORK   (input) INTEGER */
00121 /*          The dimension of the array WORK. */
00122 
00123 /*  RWORK   (workspace) REAL array, dimension (M) */
00124 
00125 /*  RESULT  (output) REAL array, dimension (2) */
00126 /*          The test ratios: */
00127 /*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */
00128 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00129 
00130 /*  ===================================================================== */
00131 
00132 /*     .. Parameters .. */
00133 /*     .. */
00134 /*     .. Local Scalars .. */
00135 /*     .. */
00136 /*     .. External Functions .. */
00137 /*     .. */
00138 /*     .. External Subroutines .. */
00139 /*     .. */
00140 /*     .. Intrinsic Functions .. */
00141 /*     .. */
00142 /*     .. Scalars in Common .. */
00143 /*     .. */
00144 /*     .. Common blocks .. */
00145 /*     .. */
00146 /*     .. Executable Statements .. */
00147 
00148 /*     Quick return if possible */
00149 
00150     /* Parameter adjustments */
00151     r_dim1 = *lda;
00152     r_offset = 1 + r_dim1;
00153     r__ -= r_offset;
00154     q_dim1 = *lda;
00155     q_offset = 1 + q_dim1;
00156     q -= q_offset;
00157     af_dim1 = *lda;
00158     af_offset = 1 + af_dim1;
00159     af -= af_offset;
00160     a_dim1 = *lda;
00161     a_offset = 1 + a_dim1;
00162     a -= a_offset;
00163     --tau;
00164     --work;
00165     --rwork;
00166     --result;
00167 
00168     /* Function Body */
00169     if (*m == 0 || *n == 0 || *k == 0) {
00170         result[1] = 0.f;
00171         result[2] = 0.f;
00172         return 0;
00173     }
00174 
00175     eps = slamch_("Epsilon");
00176 
00177 /*     Copy the last k rows of the factorization to the array Q */
00178 
00179     claset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda);
00180     if (*k < *n) {
00181         i__1 = *n - *k;
00182         clacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*m - *k 
00183                 + 1 + q_dim1], lda);
00184     }
00185     if (*k > 1) {
00186         i__1 = *k - 1;
00187         i__2 = *k - 1;
00188         clacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * 
00189                 af_dim1], lda, &q[*m - *k + 2 + (*n - *k + 1) * q_dim1], lda);
00190     }
00191 
00192 /*     Generate the last n rows of the matrix Q */
00193 
00194     s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6);
00195     cungrq_(m, n, k, &q[q_offset], lda, &tau[*m - *k + 1], &work[1], lwork, &
00196             info);
00197 
00198 /*     Copy R(m-k+1:m,n-m+1:n) */
00199 
00200     claset_("Full", k, m, &c_b9, &c_b9, &r__[*m - *k + 1 + (*n - *m + 1) * 
00201             r_dim1], lda);
00202     clacpy_("Upper", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, &
00203             r__[*m - *k + 1 + (*n - *k + 1) * r_dim1], lda);
00204 
00205 /*     Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)' */
00206 
00207     cgemm_("No transpose", "Conjugate transpose", k, m, n, &c_b14, &a[*m - *k 
00208             + 1 + a_dim1], lda, &q[q_offset], lda, &c_b15, &r__[*m - *k + 1 + 
00209             (*n - *m + 1) * r_dim1], lda);
00210 
00211 /*     Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) . */
00212 
00213     anorm = clange_("1", k, n, &a[*m - *k + 1 + a_dim1], lda, &rwork[1]);
00214     resid = clange_("1", k, m, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], 
00215             lda, &rwork[1]);
00216     if (anorm > 0.f) {
00217         result[1] = resid / (real) max(1,*n) / anorm / eps;
00218     } else {
00219         result[1] = 0.f;
00220     }
00221 
00222 /*     Compute I - Q*Q' */
00223 
00224     claset_("Full", m, m, &c_b9, &c_b15, &r__[r_offset], lda);
00225     cherk_("Upper", "No transpose", m, n, &c_b23, &q[q_offset], lda, &c_b24, &
00226             r__[r_offset], lda);
00227 
00228 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00229 
00230     resid = clansy_("1", "Upper", m, &r__[r_offset], lda, &rwork[1]);
00231 
00232     result[2] = resid / (real) max(1,*n) / eps;
00233 
00234     return 0;
00235 
00236 /*     End of CRQT02 */
00237 
00238 } /* crqt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:33