cptcon.c
Go to the documentation of this file.
00001 /* cptcon.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int cptcon_(integer *n, real *d__, complex *e, real *anorm, 
00021         real *rcond, real *rwork, integer *info)
00022 {
00023     /* System generated locals */
00024     integer i__1;
00025     real r__1;
00026 
00027     /* Builtin functions */
00028     double c_abs(complex *);
00029 
00030     /* Local variables */
00031     integer i__, ix;
00032     extern /* Subroutine */ int xerbla_(char *, integer *);
00033     extern integer isamax_(integer *, real *, integer *);
00034     real ainvnm;
00035 
00036 
00037 /*  -- LAPACK routine (version 3.2) -- */
00038 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00039 /*     November 2006 */
00040 
00041 /*     .. Scalar Arguments .. */
00042 /*     .. */
00043 /*     .. Array Arguments .. */
00044 /*     .. */
00045 
00046 /*  Purpose */
00047 /*  ======= */
00048 
00049 /*  CPTCON computes the reciprocal of the condition number (in the */
00050 /*  1-norm) of a complex Hermitian positive definite tridiagonal matrix */
00051 /*  using the factorization A = L*D*L**H or A = U**H*D*U computed by */
00052 /*  CPTTRF. */
00053 
00054 /*  Norm(inv(A)) is computed by a direct method, and the reciprocal of */
00055 /*  the condition number is computed as */
00056 /*                   RCOND = 1 / (ANORM * norm(inv(A))). */
00057 
00058 /*  Arguments */
00059 /*  ========= */
00060 
00061 /*  N       (input) INTEGER */
00062 /*          The order of the matrix A.  N >= 0. */
00063 
00064 /*  D       (input) REAL array, dimension (N) */
00065 /*          The n diagonal elements of the diagonal matrix D from the */
00066 /*          factorization of A, as computed by CPTTRF. */
00067 
00068 /*  E       (input) COMPLEX array, dimension (N-1) */
00069 /*          The (n-1) off-diagonal elements of the unit bidiagonal factor */
00070 /*          U or L from the factorization of A, as computed by CPTTRF. */
00071 
00072 /*  ANORM   (input) REAL */
00073 /*          The 1-norm of the original matrix A. */
00074 
00075 /*  RCOND   (output) REAL */
00076 /*          The reciprocal of the condition number of the matrix A, */
00077 /*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
00078 /*          1-norm of inv(A) computed in this routine. */
00079 
00080 /*  RWORK   (workspace) REAL array, dimension (N) */
00081 
00082 /*  INFO    (output) INTEGER */
00083 /*          = 0:  successful exit */
00084 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00085 
00086 /*  Further Details */
00087 /*  =============== */
00088 
00089 /*  The method used is described in Nicholas J. Higham, "Efficient */
00090 /*  Algorithms for Computing the Condition Number of a Tridiagonal */
00091 /*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */
00092 
00093 /*  ===================================================================== */
00094 
00095 /*     .. Parameters .. */
00096 /*     .. */
00097 /*     .. Local Scalars .. */
00098 /*     .. */
00099 /*     .. External Functions .. */
00100 /*     .. */
00101 /*     .. External Subroutines .. */
00102 /*     .. */
00103 /*     .. Intrinsic Functions .. */
00104 /*     .. */
00105 /*     .. Executable Statements .. */
00106 
00107 /*     Test the input arguments. */
00108 
00109     /* Parameter adjustments */
00110     --rwork;
00111     --e;
00112     --d__;
00113 
00114     /* Function Body */
00115     *info = 0;
00116     if (*n < 0) {
00117         *info = -1;
00118     } else if (*anorm < 0.f) {
00119         *info = -4;
00120     }
00121     if (*info != 0) {
00122         i__1 = -(*info);
00123         xerbla_("CPTCON", &i__1);
00124         return 0;
00125     }
00126 
00127 /*     Quick return if possible */
00128 
00129     *rcond = 0.f;
00130     if (*n == 0) {
00131         *rcond = 1.f;
00132         return 0;
00133     } else if (*anorm == 0.f) {
00134         return 0;
00135     }
00136 
00137 /*     Check that D(1:N) is positive. */
00138 
00139     i__1 = *n;
00140     for (i__ = 1; i__ <= i__1; ++i__) {
00141         if (d__[i__] <= 0.f) {
00142             return 0;
00143         }
00144 /* L10: */
00145     }
00146 
00147 /*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
00148 
00149 /*        m(i,j) =  abs(A(i,j)), i = j, */
00150 /*        m(i,j) = -abs(A(i,j)), i .ne. j, */
00151 
00152 /*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. */
00153 
00154 /*     Solve M(L) * x = e. */
00155 
00156     rwork[1] = 1.f;
00157     i__1 = *n;
00158     for (i__ = 2; i__ <= i__1; ++i__) {
00159         rwork[i__] = rwork[i__ - 1] * c_abs(&e[i__ - 1]) + 1.f;
00160 /* L20: */
00161     }
00162 
00163 /*     Solve D * M(L)' * x = b. */
00164 
00165     rwork[*n] /= d__[*n];
00166     for (i__ = *n - 1; i__ >= 1; --i__) {
00167         rwork[i__] = rwork[i__] / d__[i__] + rwork[i__ + 1] * c_abs(&e[i__]);
00168 /* L30: */
00169     }
00170 
00171 /*     Compute AINVNM = max(x(i)), 1<=i<=n. */
00172 
00173     ix = isamax_(n, &rwork[1], &c__1);
00174     ainvnm = (r__1 = rwork[ix], dabs(r__1));
00175 
00176 /*     Compute the reciprocal condition number. */
00177 
00178     if (ainvnm != 0.f) {
00179         *rcond = 1.f / ainvnm / *anorm;
00180     }
00181 
00182     return 0;
00183 
00184 /*     End of CPTCON */
00185 
00186 } /* cptcon_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:33