00001 /* cppt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static complex c_b1 = {1.f,0.f}; 00019 static integer c__1 = 1; 00020 00021 /* Subroutine */ int cppt02_(char *uplo, integer *n, integer *nrhs, complex * 00022 a, complex *x, integer *ldx, complex *b, integer *ldb, real *rwork, 00023 real *resid) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 complex q__1; 00029 00030 /* Local variables */ 00031 integer j; 00032 real eps, anorm, bnorm; 00033 extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex * 00034 , complex *, integer *, complex *, complex *, integer *); 00035 real xnorm; 00036 extern doublereal clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *), scasum_(integer *, 00037 complex *, integer *); 00038 00039 00040 /* -- LAPACK test routine (version 3.1) -- */ 00041 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00042 /* November 2006 */ 00043 00044 /* .. Scalar Arguments .. */ 00045 /* .. */ 00046 /* .. Array Arguments .. */ 00047 /* .. */ 00048 00049 /* Purpose */ 00050 /* ======= */ 00051 00052 /* CPPT02 computes the residual in the solution of a Hermitian system */ 00053 /* of linear equations A*x = b when packed storage is used for the */ 00054 /* coefficient matrix. The ratio computed is */ 00055 00056 /* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS), */ 00057 00058 /* where EPS is the machine precision. */ 00059 00060 /* Arguments */ 00061 /* ========= */ 00062 00063 /* UPLO (input) CHARACTER*1 */ 00064 /* Specifies whether the upper or lower triangular part of the */ 00065 /* Hermitian matrix A is stored: */ 00066 /* = 'U': Upper triangular */ 00067 /* = 'L': Lower triangular */ 00068 00069 /* N (input) INTEGER */ 00070 /* The number of rows and columns of the matrix A. N >= 0. */ 00071 00072 /* NRHS (input) INTEGER */ 00073 /* The number of columns of B, the matrix of right hand sides. */ 00074 /* NRHS >= 0. */ 00075 00076 /* A (input) COMPLEX array, dimension (N*(N+1)/2) */ 00077 /* The original Hermitian matrix A, stored as a packed */ 00078 /* triangular matrix. */ 00079 00080 /* X (input) COMPLEX array, dimension (LDX,NRHS) */ 00081 /* The computed solution vectors for the system of linear */ 00082 /* equations. */ 00083 00084 /* LDX (input) INTEGER */ 00085 /* The leading dimension of the array X. LDX >= max(1,N). */ 00086 00087 /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ 00088 /* On entry, the right hand side vectors for the system of */ 00089 /* linear equations. */ 00090 /* On exit, B is overwritten with the difference B - A*X. */ 00091 00092 /* LDB (input) INTEGER */ 00093 /* The leading dimension of the array B. LDB >= max(1,N). */ 00094 00095 /* RWORK (workspace) REAL array, dimension (N) */ 00096 00097 /* RESID (output) REAL */ 00098 /* The maximum over the number of right hand sides of */ 00099 /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ 00100 00101 /* ===================================================================== */ 00102 00103 /* .. Parameters .. */ 00104 /* .. */ 00105 /* .. Local Scalars .. */ 00106 /* .. */ 00107 /* .. External Functions .. */ 00108 /* .. */ 00109 /* .. External Subroutines .. */ 00110 /* .. */ 00111 /* .. Intrinsic Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 00115 /* Quick exit if N = 0 or NRHS = 0. */ 00116 00117 /* Parameter adjustments */ 00118 --a; 00119 x_dim1 = *ldx; 00120 x_offset = 1 + x_dim1; 00121 x -= x_offset; 00122 b_dim1 = *ldb; 00123 b_offset = 1 + b_dim1; 00124 b -= b_offset; 00125 --rwork; 00126 00127 /* Function Body */ 00128 if (*n <= 0 || *nrhs <= 0) { 00129 *resid = 0.f; 00130 return 0; 00131 } 00132 00133 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00134 00135 eps = slamch_("Epsilon"); 00136 anorm = clanhp_("1", uplo, n, &a[1], &rwork[1]); 00137 if (anorm <= 0.f) { 00138 *resid = 1.f / eps; 00139 return 0; 00140 } 00141 00142 /* Compute B - A*X for the matrix of right hand sides B. */ 00143 00144 i__1 = *nrhs; 00145 for (j = 1; j <= i__1; ++j) { 00146 q__1.r = -1.f, q__1.i = -0.f; 00147 chpmv_(uplo, n, &q__1, &a[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &b[j * 00148 b_dim1 + 1], &c__1); 00149 /* L10: */ 00150 } 00151 00152 /* Compute the maximum over the number of right hand sides of */ 00153 /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ 00154 00155 *resid = 0.f; 00156 i__1 = *nrhs; 00157 for (j = 1; j <= i__1; ++j) { 00158 bnorm = scasum_(n, &b[j * b_dim1 + 1], &c__1); 00159 xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1); 00160 if (xnorm <= 0.f) { 00161 *resid = 1.f / eps; 00162 } else { 00163 /* Computing MAX */ 00164 r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; 00165 *resid = dmax(r__1,r__2); 00166 } 00167 /* L20: */ 00168 } 00169 00170 return 0; 00171 00172 /* End of CPPT02 */ 00173 00174 } /* cppt02_ */