00001 /* cpotrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static complex c_b1 = {1.f,0.f}; 00019 00020 /* Subroutine */ int cpotrs_(char *uplo, integer *n, integer *nrhs, complex * 00021 a, integer *lda, complex *b, integer *ldb, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, b_dim1, b_offset, i__1; 00025 00026 /* Local variables */ 00027 extern logical lsame_(char *, char *); 00028 extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, 00029 integer *, integer *, complex *, complex *, integer *, complex *, 00030 integer *); 00031 logical upper; 00032 extern /* Subroutine */ int xerbla_(char *, integer *); 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* CPOTRS solves a system of linear equations A*X = B with a Hermitian */ 00048 /* positive definite matrix A using the Cholesky factorization */ 00049 /* A = U**H*U or A = L*L**H computed by CPOTRF. */ 00050 00051 /* Arguments */ 00052 /* ========= */ 00053 00054 /* UPLO (input) CHARACTER*1 */ 00055 /* = 'U': Upper triangle of A is stored; */ 00056 /* = 'L': Lower triangle of A is stored. */ 00057 00058 /* N (input) INTEGER */ 00059 /* The order of the matrix A. N >= 0. */ 00060 00061 /* NRHS (input) INTEGER */ 00062 /* The number of right hand sides, i.e., the number of columns */ 00063 /* of the matrix B. NRHS >= 0. */ 00064 00065 /* A (input) COMPLEX array, dimension (LDA,N) */ 00066 /* The triangular factor U or L from the Cholesky factorization */ 00067 /* A = U**H*U or A = L*L**H, as computed by CPOTRF. */ 00068 00069 /* LDA (input) INTEGER */ 00070 /* The leading dimension of the array A. LDA >= max(1,N). */ 00071 00072 /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ 00073 /* On entry, the right hand side matrix B. */ 00074 /* On exit, the solution matrix X. */ 00075 00076 /* LDB (input) INTEGER */ 00077 /* The leading dimension of the array B. LDB >= max(1,N). */ 00078 00079 /* INFO (output) INTEGER */ 00080 /* = 0: successful exit */ 00081 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00082 00083 /* ===================================================================== */ 00084 00085 /* .. Parameters .. */ 00086 /* .. */ 00087 /* .. Local Scalars .. */ 00088 /* .. */ 00089 /* .. External Functions .. */ 00090 /* .. */ 00091 /* .. External Subroutines .. */ 00092 /* .. */ 00093 /* .. Intrinsic Functions .. */ 00094 /* .. */ 00095 /* .. Executable Statements .. */ 00096 00097 /* Test the input parameters. */ 00098 00099 /* Parameter adjustments */ 00100 a_dim1 = *lda; 00101 a_offset = 1 + a_dim1; 00102 a -= a_offset; 00103 b_dim1 = *ldb; 00104 b_offset = 1 + b_dim1; 00105 b -= b_offset; 00106 00107 /* Function Body */ 00108 *info = 0; 00109 upper = lsame_(uplo, "U"); 00110 if (! upper && ! lsame_(uplo, "L")) { 00111 *info = -1; 00112 } else if (*n < 0) { 00113 *info = -2; 00114 } else if (*nrhs < 0) { 00115 *info = -3; 00116 } else if (*lda < max(1,*n)) { 00117 *info = -5; 00118 } else if (*ldb < max(1,*n)) { 00119 *info = -7; 00120 } 00121 if (*info != 0) { 00122 i__1 = -(*info); 00123 xerbla_("CPOTRS", &i__1); 00124 return 0; 00125 } 00126 00127 /* Quick return if possible */ 00128 00129 if (*n == 0 || *nrhs == 0) { 00130 return 0; 00131 } 00132 00133 if (upper) { 00134 00135 /* Solve A*X = B where A = U'*U. */ 00136 00137 /* Solve U'*X = B, overwriting B with X. */ 00138 00139 ctrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", n, nrhs, & 00140 c_b1, &a[a_offset], lda, &b[b_offset], ldb); 00141 00142 /* Solve U*X = B, overwriting B with X. */ 00143 00144 ctrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b1, & 00145 a[a_offset], lda, &b[b_offset], ldb); 00146 } else { 00147 00148 /* Solve A*X = B where A = L*L'. */ 00149 00150 /* Solve L*X = B, overwriting B with X. */ 00151 00152 ctrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b1, & 00153 a[a_offset], lda, &b[b_offset], ldb); 00154 00155 /* Solve L'*X = B, overwriting B with X. */ 00156 00157 ctrsm_("Left", "Lower", "Conjugate transpose", "Non-unit", n, nrhs, & 00158 c_b1, &a[a_offset], lda, &b[b_offset], ldb); 00159 } 00160 00161 return 0; 00162 00163 /* End of CPOTRS */ 00164 00165 } /* cpotrs_ */