clqt01.c
Go to the documentation of this file.
00001 /* clqt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static complex c_b1 = {-1e10f,-1e10f};
00027 static complex c_b10 = {0.f,0.f};
00028 static complex c_b15 = {-1.f,0.f};
00029 static complex c_b16 = {1.f,0.f};
00030 static real c_b24 = -1.f;
00031 static real c_b25 = 1.f;
00032 
00033 /* Subroutine */ int clqt01_(integer *m, integer *n, complex *a, complex *af, 
00034         complex *q, complex *l, integer *lda, complex *tau, complex *work, 
00035         integer *lwork, real *rwork, real *result)
00036 {
00037     /* System generated locals */
00038     integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
00039             q_offset, i__1;
00040 
00041     /* Builtin functions */
00042     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00043 
00044     /* Local variables */
00045     real eps;
00046     integer info;
00047     extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
00048             integer *, complex *, complex *, integer *, complex *, integer *, 
00049             complex *, complex *, integer *), cherk_(char *, 
00050             char *, integer *, integer *, real *, complex *, integer *, real *
00051 , complex *, integer *);
00052     real resid, anorm;
00053     integer minmn;
00054     extern doublereal clange_(char *, integer *, integer *, complex *, 
00055             integer *, real *);
00056     extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, 
00057             integer *, complex *, complex *, integer *, integer *);
00058     extern doublereal slamch_(char *);
00059     extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
00060             *, integer *, complex *, integer *), claset_(char *, 
00061             integer *, integer *, complex *, complex *, complex *, integer *);
00062     extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
00063              real *);
00064     extern /* Subroutine */ int cunglq_(integer *, integer *, integer *, 
00065             complex *, integer *, complex *, complex *, integer *, integer *);
00066 
00067 
00068 /*  -- LAPACK test routine (version 3.1) -- */
00069 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00070 /*     November 2006 */
00071 
00072 /*     .. Scalar Arguments .. */
00073 /*     .. */
00074 /*     .. Array Arguments .. */
00075 /*     .. */
00076 
00077 /*  Purpose */
00078 /*  ======= */
00079 
00080 /*  CLQT01 tests CGELQF, which computes the LQ factorization of an m-by-n */
00081 /*  matrix A, and partially tests CUNGLQ which forms the n-by-n */
00082 /*  orthogonal matrix Q. */
00083 
00084 /*  CLQT01 compares L with A*Q', and checks that Q is orthogonal. */
00085 
00086 /*  Arguments */
00087 /*  ========= */
00088 
00089 /*  M       (input) INTEGER */
00090 /*          The number of rows of the matrix A.  M >= 0. */
00091 
00092 /*  N       (input) INTEGER */
00093 /*          The number of columns of the matrix A.  N >= 0. */
00094 
00095 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00096 /*          The m-by-n matrix A. */
00097 
00098 /*  AF      (output) COMPLEX array, dimension (LDA,N) */
00099 /*          Details of the LQ factorization of A, as returned by CGELQF. */
00100 /*          See CGELQF for further details. */
00101 
00102 /*  Q       (output) COMPLEX array, dimension (LDA,N) */
00103 /*          The n-by-n orthogonal matrix Q. */
00104 
00105 /*  L       (workspace) COMPLEX array, dimension (LDA,max(M,N)) */
00106 
00107 /*  LDA     (input) INTEGER */
00108 /*          The leading dimension of the arrays A, AF, Q and L. */
00109 /*          LDA >= max(M,N). */
00110 
00111 /*  TAU     (output) COMPLEX array, dimension (min(M,N)) */
00112 /*          The scalar factors of the elementary reflectors, as returned */
00113 /*          by CGELQF. */
00114 
00115 /*  WORK    (workspace) COMPLEX array, dimension (LWORK) */
00116 
00117 /*  LWORK   (input) INTEGER */
00118 /*          The dimension of the array WORK. */
00119 
00120 /*  RWORK   (workspace) REAL array, dimension (max(M,N)) */
00121 
00122 /*  RESULT  (output) REAL array, dimension (2) */
00123 /*          The test ratios: */
00124 /*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */
00125 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00126 
00127 /*  ===================================================================== */
00128 
00129 /*     .. Parameters .. */
00130 /*     .. */
00131 /*     .. Local Scalars .. */
00132 /*     .. */
00133 /*     .. External Functions .. */
00134 /*     .. */
00135 /*     .. External Subroutines .. */
00136 /*     .. */
00137 /*     .. Intrinsic Functions .. */
00138 /*     .. */
00139 /*     .. Scalars in Common .. */
00140 /*     .. */
00141 /*     .. Common blocks .. */
00142 /*     .. */
00143 /*     .. Executable Statements .. */
00144 
00145     /* Parameter adjustments */
00146     l_dim1 = *lda;
00147     l_offset = 1 + l_dim1;
00148     l -= l_offset;
00149     q_dim1 = *lda;
00150     q_offset = 1 + q_dim1;
00151     q -= q_offset;
00152     af_dim1 = *lda;
00153     af_offset = 1 + af_dim1;
00154     af -= af_offset;
00155     a_dim1 = *lda;
00156     a_offset = 1 + a_dim1;
00157     a -= a_offset;
00158     --tau;
00159     --work;
00160     --rwork;
00161     --result;
00162 
00163     /* Function Body */
00164     minmn = min(*m,*n);
00165     eps = slamch_("Epsilon");
00166 
00167 /*     Copy the matrix A to the array AF. */
00168 
00169     clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);
00170 
00171 /*     Factorize the matrix A in the array AF. */
00172 
00173     s_copy(srnamc_1.srnamt, "CGELQF", (ftnlen)32, (ftnlen)6);
00174     cgelqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);
00175 
00176 /*     Copy details of Q */
00177 
00178     claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
00179     if (*n > 1) {
00180         i__1 = *n - 1;
00181         clacpy_("Upper", m, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 <<
00182                  1) + 1], lda);
00183     }
00184 
00185 /*     Generate the n-by-n matrix Q */
00186 
00187     s_copy(srnamc_1.srnamt, "CUNGLQ", (ftnlen)32, (ftnlen)6);
00188     cunglq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00189 
00190 /*     Copy L */
00191 
00192     claset_("Full", m, n, &c_b10, &c_b10, &l[l_offset], lda);
00193     clacpy_("Lower", m, n, &af[af_offset], lda, &l[l_offset], lda);
00194 
00195 /*     Compute L - A*Q' */
00196 
00197     cgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b15, &a[
00198             a_offset], lda, &q[q_offset], lda, &c_b16, &l[l_offset], lda);
00199 
00200 /*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . */
00201 
00202     anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]);
00203     resid = clange_("1", m, n, &l[l_offset], lda, &rwork[1]);
00204     if (anorm > 0.f) {
00205         result[1] = resid / (real) max(1,*n) / anorm / eps;
00206     } else {
00207         result[1] = 0.f;
00208     }
00209 
00210 /*     Compute I - Q*Q' */
00211 
00212     claset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda);
00213     cherk_("Upper", "No transpose", n, n, &c_b24, &q[q_offset], lda, &c_b25, &
00214             l[l_offset], lda);
00215 
00216 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00217 
00218     resid = clansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]);
00219 
00220     result[2] = resid / (real) max(1,*n) / eps;
00221 
00222     return 0;
00223 
00224 /*     End of CLQT01 */
00225 
00226 } /* clqt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:32