00001 /* clatrz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int clatrz_(integer *m, integer *n, integer *l, complex *a, 00017 integer *lda, complex *tau, complex *work) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2; 00021 complex q__1; 00022 00023 /* Builtin functions */ 00024 void r_cnjg(complex *, complex *); 00025 00026 /* Local variables */ 00027 integer i__; 00028 complex alpha; 00029 extern /* Subroutine */ int clarz_(char *, integer *, integer *, integer * 00030 , complex *, integer *, complex *, complex *, integer *, complex * 00031 ), clacgv_(integer *, complex *, integer *), clarfp_( 00032 integer *, complex *, complex *, integer *, complex *); 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00037 /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ 00038 /* November 2006 */ 00039 00040 /* .. Scalar Arguments .. */ 00041 /* .. */ 00042 /* .. Array Arguments .. */ 00043 /* .. */ 00044 00045 /* Purpose */ 00046 /* ======= */ 00047 00048 /* CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix */ 00049 /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means */ 00050 /* of unitary transformations, where Z is an (M+L)-by-(M+L) unitary */ 00051 /* matrix and, R and A1 are M-by-M upper triangular matrices. */ 00052 00053 /* Arguments */ 00054 /* ========= */ 00055 00056 /* M (input) INTEGER */ 00057 /* The number of rows of the matrix A. M >= 0. */ 00058 00059 /* N (input) INTEGER */ 00060 /* The number of columns of the matrix A. N >= 0. */ 00061 00062 /* L (input) INTEGER */ 00063 /* The number of columns of the matrix A containing the */ 00064 /* meaningful part of the Householder vectors. N-M >= L >= 0. */ 00065 00066 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00067 /* On entry, the leading M-by-N upper trapezoidal part of the */ 00068 /* array A must contain the matrix to be factorized. */ 00069 /* On exit, the leading M-by-M upper triangular part of A */ 00070 /* contains the upper triangular matrix R, and elements N-L+1 to */ 00071 /* N of the first M rows of A, with the array TAU, represent the */ 00072 /* unitary matrix Z as a product of M elementary reflectors. */ 00073 00074 /* LDA (input) INTEGER */ 00075 /* The leading dimension of the array A. LDA >= max(1,M). */ 00076 00077 /* TAU (output) COMPLEX array, dimension (M) */ 00078 /* The scalar factors of the elementary reflectors. */ 00079 00080 /* WORK (workspace) COMPLEX array, dimension (M) */ 00081 00082 /* Further Details */ 00083 /* =============== */ 00084 00085 /* Based on contributions by */ 00086 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00087 00088 /* The factorization is obtained by Householder's method. The kth */ 00089 /* transformation matrix, Z( k ), which is used to introduce zeros into */ 00090 /* the ( m - k + 1 )th row of A, is given in the form */ 00091 00092 /* Z( k ) = ( I 0 ), */ 00093 /* ( 0 T( k ) ) */ 00094 00095 /* where */ 00096 00097 /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ 00098 /* ( 0 ) */ 00099 /* ( z( k ) ) */ 00100 00101 /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */ 00102 /* are chosen to annihilate the elements of the kth row of A2. */ 00103 00104 /* The scalar tau is returned in the kth element of TAU and the vector */ 00105 /* u( k ) in the kth row of A2, such that the elements of z( k ) are */ 00106 /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */ 00107 /* the upper triangular part of A1. */ 00108 00109 /* Z is given by */ 00110 00111 /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ 00112 00113 /* ===================================================================== */ 00114 00115 /* .. Parameters .. */ 00116 /* .. */ 00117 /* .. Local Scalars .. */ 00118 /* .. */ 00119 /* .. External Subroutines .. */ 00120 /* .. */ 00121 /* .. Intrinsic Functions .. */ 00122 /* .. */ 00123 /* .. Executable Statements .. */ 00124 00125 /* Quick return if possible */ 00126 00127 /* Parameter adjustments */ 00128 a_dim1 = *lda; 00129 a_offset = 1 + a_dim1; 00130 a -= a_offset; 00131 --tau; 00132 --work; 00133 00134 /* Function Body */ 00135 if (*m == 0) { 00136 return 0; 00137 } else if (*m == *n) { 00138 i__1 = *n; 00139 for (i__ = 1; i__ <= i__1; ++i__) { 00140 i__2 = i__; 00141 tau[i__2].r = 0.f, tau[i__2].i = 0.f; 00142 /* L10: */ 00143 } 00144 return 0; 00145 } 00146 00147 for (i__ = *m; i__ >= 1; --i__) { 00148 00149 /* Generate elementary reflector H(i) to annihilate */ 00150 /* [ A(i,i) A(i,n-l+1:n) ] */ 00151 00152 clacgv_(l, &a[i__ + (*n - *l + 1) * a_dim1], lda); 00153 r_cnjg(&q__1, &a[i__ + i__ * a_dim1]); 00154 alpha.r = q__1.r, alpha.i = q__1.i; 00155 i__1 = *l + 1; 00156 clarfp_(&i__1, &alpha, &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[ 00157 i__]); 00158 i__1 = i__; 00159 r_cnjg(&q__1, &tau[i__]); 00160 tau[i__1].r = q__1.r, tau[i__1].i = q__1.i; 00161 00162 /* Apply H(i) to A(1:i-1,i:n) from the right */ 00163 00164 i__1 = i__ - 1; 00165 i__2 = *n - i__ + 1; 00166 r_cnjg(&q__1, &tau[i__]); 00167 clarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 00168 lda, &q__1, &a[i__ * a_dim1 + 1], lda, &work[1]); 00169 i__1 = i__ + i__ * a_dim1; 00170 r_cnjg(&q__1, &alpha); 00171 a[i__1].r = q__1.r, a[i__1].i = q__1.i; 00172 00173 /* L20: */ 00174 } 00175 00176 return 0; 00177 00178 /* End of CLATRZ */ 00179 00180 } /* clatrz_ */