clarz.c
Go to the documentation of this file.
00001 /* clarz.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {1.f,0.f};
00019 static integer c__1 = 1;
00020 
00021 /* Subroutine */ int clarz_(char *side, integer *m, integer *n, integer *l, 
00022         complex *v, integer *incv, complex *tau, complex *c__, integer *ldc, 
00023         complex *work)
00024 {
00025     /* System generated locals */
00026     integer c_dim1, c_offset;
00027     complex q__1;
00028 
00029     /* Local variables */
00030     extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, 
00031             complex *, integer *, complex *, integer *, complex *, integer *),
00032              cgemv_(char *, integer *, integer *, complex *, complex *, 
00033             integer *, complex *, integer *, complex *, complex *, integer *);
00034     extern logical lsame_(char *, char *);
00035     extern /* Subroutine */ int cgeru_(integer *, integer *, complex *, 
00036             complex *, integer *, complex *, integer *, complex *, integer *),
00037              ccopy_(integer *, complex *, integer *, complex *, integer *), 
00038             caxpy_(integer *, complex *, complex *, integer *, complex *, 
00039             integer *), clacgv_(integer *, complex *, integer *);
00040 
00041 
00042 /*  -- LAPACK routine (version 3.2) -- */
00043 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00044 /*     November 2006 */
00045 
00046 /*     .. Scalar Arguments .. */
00047 /*     .. */
00048 /*     .. Array Arguments .. */
00049 /*     .. */
00050 
00051 /*  Purpose */
00052 /*  ======= */
00053 
00054 /*  CLARZ applies a complex elementary reflector H to a complex */
00055 /*  M-by-N matrix C, from either the left or the right. H is represented */
00056 /*  in the form */
00057 
00058 /*        H = I - tau * v * v' */
00059 
00060 /*  where tau is a complex scalar and v is a complex vector. */
00061 
00062 /*  If tau = 0, then H is taken to be the unit matrix. */
00063 
00064 /*  To apply H' (the conjugate transpose of H), supply conjg(tau) instead */
00065 /*  tau. */
00066 
00067 /*  H is a product of k elementary reflectors as returned by CTZRZF. */
00068 
00069 /*  Arguments */
00070 /*  ========= */
00071 
00072 /*  SIDE    (input) CHARACTER*1 */
00073 /*          = 'L': form  H * C */
00074 /*          = 'R': form  C * H */
00075 
00076 /*  M       (input) INTEGER */
00077 /*          The number of rows of the matrix C. */
00078 
00079 /*  N       (input) INTEGER */
00080 /*          The number of columns of the matrix C. */
00081 
00082 /*  L       (input) INTEGER */
00083 /*          The number of entries of the vector V containing */
00084 /*          the meaningful part of the Householder vectors. */
00085 /*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
00086 
00087 /*  V       (input) COMPLEX array, dimension (1+(L-1)*abs(INCV)) */
00088 /*          The vector v in the representation of H as returned by */
00089 /*          CTZRZF. V is not used if TAU = 0. */
00090 
00091 /*  INCV    (input) INTEGER */
00092 /*          The increment between elements of v. INCV <> 0. */
00093 
00094 /*  TAU     (input) COMPLEX */
00095 /*          The value tau in the representation of H. */
00096 
00097 /*  C       (input/output) COMPLEX array, dimension (LDC,N) */
00098 /*          On entry, the M-by-N matrix C. */
00099 /*          On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
00100 /*          or C * H if SIDE = 'R'. */
00101 
00102 /*  LDC     (input) INTEGER */
00103 /*          The leading dimension of the array C. LDC >= max(1,M). */
00104 
00105 /*  WORK    (workspace) COMPLEX array, dimension */
00106 /*                         (N) if SIDE = 'L' */
00107 /*                      or (M) if SIDE = 'R' */
00108 
00109 /*  Further Details */
00110 /*  =============== */
00111 
00112 /*  Based on contributions by */
00113 /*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
00114 
00115 /*  ===================================================================== */
00116 
00117 /*     .. Parameters .. */
00118 /*     .. */
00119 /*     .. External Subroutines .. */
00120 /*     .. */
00121 /*     .. External Functions .. */
00122 /*     .. */
00123 /*     .. Executable Statements .. */
00124 
00125     /* Parameter adjustments */
00126     --v;
00127     c_dim1 = *ldc;
00128     c_offset = 1 + c_dim1;
00129     c__ -= c_offset;
00130     --work;
00131 
00132     /* Function Body */
00133     if (lsame_(side, "L")) {
00134 
00135 /*        Form  H * C */
00136 
00137         if (tau->r != 0.f || tau->i != 0.f) {
00138 
00139 /*           w( 1:n ) = conjg( C( 1, 1:n ) ) */
00140 
00141             ccopy_(n, &c__[c_offset], ldc, &work[1], &c__1);
00142             clacgv_(n, &work[1], &c__1);
00143 
00144 /*           w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) ) */
00145 
00146             cgemv_("Conjugate transpose", l, n, &c_b1, &c__[*m - *l + 1 + 
00147                     c_dim1], ldc, &v[1], incv, &c_b1, &work[1], &c__1);
00148             clacgv_(n, &work[1], &c__1);
00149 
00150 /*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) */
00151 
00152             q__1.r = -tau->r, q__1.i = -tau->i;
00153             caxpy_(n, &q__1, &work[1], &c__1, &c__[c_offset], ldc);
00154 
00155 /*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */
00156 /*                               tau * v( 1:l ) * conjg( w( 1:n )' ) */
00157 
00158             q__1.r = -tau->r, q__1.i = -tau->i;
00159             cgeru_(l, n, &q__1, &v[1], incv, &work[1], &c__1, &c__[*m - *l + 
00160                     1 + c_dim1], ldc);
00161         }
00162 
00163     } else {
00164 
00165 /*        Form  C * H */
00166 
00167         if (tau->r != 0.f || tau->i != 0.f) {
00168 
00169 /*           w( 1:m ) = C( 1:m, 1 ) */
00170 
00171             ccopy_(m, &c__[c_offset], &c__1, &work[1], &c__1);
00172 
00173 /*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) */
00174 
00175             cgemv_("No transpose", m, l, &c_b1, &c__[(*n - *l + 1) * c_dim1 + 
00176                     1], ldc, &v[1], incv, &c_b1, &work[1], &c__1);
00177 
00178 /*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) */
00179 
00180             q__1.r = -tau->r, q__1.i = -tau->i;
00181             caxpy_(m, &q__1, &work[1], &c__1, &c__[c_offset], &c__1);
00182 
00183 /*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */
00184 /*                               tau * w( 1:m ) * v( 1:l )' */
00185 
00186             q__1.r = -tau->r, q__1.i = -tau->i;
00187             cgerc_(m, l, &q__1, &work[1], &c__1, &v[1], incv, &c__[(*n - *l + 
00188                     1) * c_dim1 + 1], ldc);
00189 
00190         }
00191 
00192     }
00193 
00194     return 0;
00195 
00196 /*     End of CLARZ */
00197 
00198 } /* clarz_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:31