clarf.c
Go to the documentation of this file.
00001 /* clarf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {1.f,0.f};
00019 static complex c_b2 = {0.f,0.f};
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int clarf_(char *side, integer *m, integer *n, complex *v, 
00023         integer *incv, complex *tau, complex *c__, integer *ldc, complex *
00024         work)
00025 {
00026     /* System generated locals */
00027     integer c_dim1, c_offset, i__1;
00028     complex q__1;
00029 
00030     /* Local variables */
00031     integer i__;
00032     logical applyleft;
00033     extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, 
00034             complex *, integer *, complex *, integer *, complex *, integer *),
00035              cgemv_(char *, integer *, integer *, complex *, complex *, 
00036             integer *, complex *, integer *, complex *, complex *, integer *);
00037     extern logical lsame_(char *, char *);
00038     integer lastc, lastv;
00039     extern integer ilaclc_(integer *, integer *, complex *, integer *), 
00040             ilaclr_(integer *, integer *, complex *, integer *);
00041 
00042 
00043 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00044 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00045 /*     November 2006 */
00046 
00047 /*     .. Scalar Arguments .. */
00048 /*     .. */
00049 /*     .. Array Arguments .. */
00050 /*     .. */
00051 
00052 /*  Purpose */
00053 /*  ======= */
00054 
00055 /*  CLARF applies a complex elementary reflector H to a complex M-by-N */
00056 /*  matrix C, from either the left or the right. H is represented in the */
00057 /*  form */
00058 
00059 /*        H = I - tau * v * v' */
00060 
00061 /*  where tau is a complex scalar and v is a complex vector. */
00062 
00063 /*  If tau = 0, then H is taken to be the unit matrix. */
00064 
00065 /*  To apply H' (the conjugate transpose of H), supply conjg(tau) instead */
00066 /*  tau. */
00067 
00068 /*  Arguments */
00069 /*  ========= */
00070 
00071 /*  SIDE    (input) CHARACTER*1 */
00072 /*          = 'L': form  H * C */
00073 /*          = 'R': form  C * H */
00074 
00075 /*  M       (input) INTEGER */
00076 /*          The number of rows of the matrix C. */
00077 
00078 /*  N       (input) INTEGER */
00079 /*          The number of columns of the matrix C. */
00080 
00081 /*  V       (input) COMPLEX array, dimension */
00082 /*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
00083 /*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
00084 /*          The vector v in the representation of H. V is not used if */
00085 /*          TAU = 0. */
00086 
00087 /*  INCV    (input) INTEGER */
00088 /*          The increment between elements of v. INCV <> 0. */
00089 
00090 /*  TAU     (input) COMPLEX */
00091 /*          The value tau in the representation of H. */
00092 
00093 /*  C       (input/output) COMPLEX array, dimension (LDC,N) */
00094 /*          On entry, the M-by-N matrix C. */
00095 /*          On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
00096 /*          or C * H if SIDE = 'R'. */
00097 
00098 /*  LDC     (input) INTEGER */
00099 /*          The leading dimension of the array C. LDC >= max(1,M). */
00100 
00101 /*  WORK    (workspace) COMPLEX array, dimension */
00102 /*                         (N) if SIDE = 'L' */
00103 /*                      or (M) if SIDE = 'R' */
00104 
00105 /*  ===================================================================== */
00106 
00107 /*     .. Parameters .. */
00108 /*     .. */
00109 /*     .. Local Scalars .. */
00110 /*     .. */
00111 /*     .. External Subroutines .. */
00112 /*     .. */
00113 /*     .. External Functions .. */
00114 /*     .. */
00115 /*     .. Executable Statements .. */
00116 
00117     /* Parameter adjustments */
00118     --v;
00119     c_dim1 = *ldc;
00120     c_offset = 1 + c_dim1;
00121     c__ -= c_offset;
00122     --work;
00123 
00124     /* Function Body */
00125     applyleft = lsame_(side, "L");
00126     lastv = 0;
00127     lastc = 0;
00128     if (tau->r != 0.f || tau->i != 0.f) {
00129 /*     Set up variables for scanning V.  LASTV begins pointing to the end */
00130 /*     of V. */
00131         if (applyleft) {
00132             lastv = *m;
00133         } else {
00134             lastv = *n;
00135         }
00136         if (*incv > 0) {
00137             i__ = (lastv - 1) * *incv + 1;
00138         } else {
00139             i__ = 1;
00140         }
00141 /*     Look for the last non-zero row in V. */
00142         for(;;) { /* while(complicated condition) */
00143             i__1 = i__;
00144             if (!(lastv > 0 && (v[i__1].r == 0.f && v[i__1].i == 0.f)))
00145                 break;
00146             --lastv;
00147             i__ -= *incv;
00148         }
00149         if (applyleft) {
00150 /*     Scan for the last non-zero column in C(1:lastv,:). */
00151             lastc = ilaclc_(&lastv, n, &c__[c_offset], ldc);
00152         } else {
00153 /*     Scan for the last non-zero row in C(:,1:lastv). */
00154             lastc = ilaclr_(m, &lastv, &c__[c_offset], ldc);
00155         }
00156     }
00157 /*     Note that lastc.eq.0 renders the BLAS operations null; no special */
00158 /*     case is needed at this level. */
00159     if (applyleft) {
00160 
00161 /*        Form  H * C */
00162 
00163         if (lastv > 0) {
00164 
00165 /*           w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */
00166 
00167             cgemv_("Conjugate transpose", &lastv, &lastc, &c_b1, &c__[
00168                     c_offset], ldc, &v[1], incv, &c_b2, &work[1], &c__1);
00169 
00170 /*           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */
00171 
00172             q__1.r = -tau->r, q__1.i = -tau->i;
00173             cgerc_(&lastv, &lastc, &q__1, &v[1], incv, &work[1], &c__1, &c__[
00174                     c_offset], ldc);
00175         }
00176     } else {
00177 
00178 /*        Form  C * H */
00179 
00180         if (lastv > 0) {
00181 
00182 /*           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */
00183 
00184             cgemv_("No transpose", &lastc, &lastv, &c_b1, &c__[c_offset], ldc, 
00185                      &v[1], incv, &c_b2, &work[1], &c__1);
00186 
00187 /*           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */
00188 
00189             q__1.r = -tau->r, q__1.i = -tau->i;
00190             cgerc_(&lastc, &lastv, &q__1, &work[1], &c__1, &v[1], incv, &c__[
00191                     c_offset], ldc);
00192         }
00193     }
00194     return 0;
00195 
00196 /*     End of CLARF */
00197 
00198 } /* clarf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:31