00001 /* claqge.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int claqge_(integer *m, integer *n, complex *a, integer *lda, 00017 real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, char * 00018 equed) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; 00022 real r__1; 00023 complex q__1; 00024 00025 /* Local variables */ 00026 integer i__, j; 00027 real cj, large, small; 00028 extern doublereal slamch_(char *); 00029 00030 00031 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00032 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00033 /* November 2006 */ 00034 00035 /* .. Scalar Arguments .. */ 00036 /* .. */ 00037 /* .. Array Arguments .. */ 00038 /* .. */ 00039 00040 /* Purpose */ 00041 /* ======= */ 00042 00043 /* CLAQGE equilibrates a general M by N matrix A using the row and */ 00044 /* column scaling factors in the vectors R and C. */ 00045 00046 /* Arguments */ 00047 /* ========= */ 00048 00049 /* M (input) INTEGER */ 00050 /* The number of rows of the matrix A. M >= 0. */ 00051 00052 /* N (input) INTEGER */ 00053 /* The number of columns of the matrix A. N >= 0. */ 00054 00055 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00056 /* On entry, the M by N matrix A. */ 00057 /* On exit, the equilibrated matrix. See EQUED for the form of */ 00058 /* the equilibrated matrix. */ 00059 00060 /* LDA (input) INTEGER */ 00061 /* The leading dimension of the array A. LDA >= max(M,1). */ 00062 00063 /* R (input) REAL array, dimension (M) */ 00064 /* The row scale factors for A. */ 00065 00066 /* C (input) REAL array, dimension (N) */ 00067 /* The column scale factors for A. */ 00068 00069 /* ROWCND (input) REAL */ 00070 /* Ratio of the smallest R(i) to the largest R(i). */ 00071 00072 /* COLCND (input) REAL */ 00073 /* Ratio of the smallest C(i) to the largest C(i). */ 00074 00075 /* AMAX (input) REAL */ 00076 /* Absolute value of largest matrix entry. */ 00077 00078 /* EQUED (output) CHARACTER*1 */ 00079 /* Specifies the form of equilibration that was done. */ 00080 /* = 'N': No equilibration */ 00081 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00082 /* diag(R). */ 00083 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00084 /* by diag(C). */ 00085 /* = 'B': Both row and column equilibration, i.e., A has been */ 00086 /* replaced by diag(R) * A * diag(C). */ 00087 00088 /* Internal Parameters */ 00089 /* =================== */ 00090 00091 /* THRESH is a threshold value used to decide if row or column scaling */ 00092 /* should be done based on the ratio of the row or column scaling */ 00093 /* factors. If ROWCND < THRESH, row scaling is done, and if */ 00094 /* COLCND < THRESH, column scaling is done. */ 00095 00096 /* LARGE and SMALL are threshold values used to decide if row scaling */ 00097 /* should be done based on the absolute size of the largest matrix */ 00098 /* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done. */ 00099 00100 /* ===================================================================== */ 00101 00102 /* .. Parameters .. */ 00103 /* .. */ 00104 /* .. Local Scalars .. */ 00105 /* .. */ 00106 /* .. External Functions .. */ 00107 /* .. */ 00108 /* .. Executable Statements .. */ 00109 00110 /* Quick return if possible */ 00111 00112 /* Parameter adjustments */ 00113 a_dim1 = *lda; 00114 a_offset = 1 + a_dim1; 00115 a -= a_offset; 00116 --r__; 00117 --c__; 00118 00119 /* Function Body */ 00120 if (*m <= 0 || *n <= 0) { 00121 *(unsigned char *)equed = 'N'; 00122 return 0; 00123 } 00124 00125 /* Initialize LARGE and SMALL. */ 00126 00127 small = slamch_("Safe minimum") / slamch_("Precision"); 00128 large = 1.f / small; 00129 00130 if (*rowcnd >= .1f && *amax >= small && *amax <= large) { 00131 00132 /* No row scaling */ 00133 00134 if (*colcnd >= .1f) { 00135 00136 /* No column scaling */ 00137 00138 *(unsigned char *)equed = 'N'; 00139 } else { 00140 00141 /* Column scaling */ 00142 00143 i__1 = *n; 00144 for (j = 1; j <= i__1; ++j) { 00145 cj = c__[j]; 00146 i__2 = *m; 00147 for (i__ = 1; i__ <= i__2; ++i__) { 00148 i__3 = i__ + j * a_dim1; 00149 i__4 = i__ + j * a_dim1; 00150 q__1.r = cj * a[i__4].r, q__1.i = cj * a[i__4].i; 00151 a[i__3].r = q__1.r, a[i__3].i = q__1.i; 00152 /* L10: */ 00153 } 00154 /* L20: */ 00155 } 00156 *(unsigned char *)equed = 'C'; 00157 } 00158 } else if (*colcnd >= .1f) { 00159 00160 /* Row scaling, no column scaling */ 00161 00162 i__1 = *n; 00163 for (j = 1; j <= i__1; ++j) { 00164 i__2 = *m; 00165 for (i__ = 1; i__ <= i__2; ++i__) { 00166 i__3 = i__ + j * a_dim1; 00167 i__4 = i__; 00168 i__5 = i__ + j * a_dim1; 00169 q__1.r = r__[i__4] * a[i__5].r, q__1.i = r__[i__4] * a[i__5] 00170 .i; 00171 a[i__3].r = q__1.r, a[i__3].i = q__1.i; 00172 /* L30: */ 00173 } 00174 /* L40: */ 00175 } 00176 *(unsigned char *)equed = 'R'; 00177 } else { 00178 00179 /* Row and column scaling */ 00180 00181 i__1 = *n; 00182 for (j = 1; j <= i__1; ++j) { 00183 cj = c__[j]; 00184 i__2 = *m; 00185 for (i__ = 1; i__ <= i__2; ++i__) { 00186 i__3 = i__ + j * a_dim1; 00187 r__1 = cj * r__[i__]; 00188 i__4 = i__ + j * a_dim1; 00189 q__1.r = r__1 * a[i__4].r, q__1.i = r__1 * a[i__4].i; 00190 a[i__3].r = q__1.r, a[i__3].i = q__1.i; 00191 /* L50: */ 00192 } 00193 /* L60: */ 00194 } 00195 *(unsigned char *)equed = 'B'; 00196 } 00197 00198 return 0; 00199 00200 /* End of CLAQGE */ 00201 00202 } /* claqge_ */