claipd.c
Go to the documentation of this file.
00001 /* claipd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int claipd_(integer *n, complex *a, integer *inda, integer *
00017         vinda)
00018 {
00019     /* System generated locals */
00020     integer i__1, i__2, i__3;
00021     real r__1;
00022     complex q__1;
00023 
00024     /* Local variables */
00025     integer i__, ia, ixa;
00026     extern doublereal slamch_(char *);
00027     real bignum;
00028 
00029 
00030 /*  -- LAPACK test routine (version 3.1) -- */
00031 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00032 /*     November 2006 */
00033 
00034 /*     .. Scalar Arguments .. */
00035 /*     .. */
00036 /*     .. Array Arguments .. */
00037 /*     .. */
00038 
00039 /*  Purpose */
00040 /*  ======= */
00041 
00042 /*  CLAIPD sets the imaginary part of the diagonal elements of a complex */
00043 /*  matrix A to a large value.  This is used to test LAPACK routines for */
00044 /*  complex Hermitian matrices, which are not supposed to access or use */
00045 /*  the imaginary parts of the diagonals. */
00046 
00047 /*  Arguments */
00048 /*  ========= */
00049 
00050 /*  N      (input) INTEGER */
00051 /*         The number of diagonal elements of A. */
00052 
00053 /*  A      (input/output) COMPLEX array, dimension */
00054 /*                        (1+(N-1)*INDA+(N-2)*VINDA) */
00055 /*         On entry, the complex (Hermitian) matrix A. */
00056 /*         On exit, the imaginary parts of the diagonal elements are set */
00057 /*         to BIGNUM = EPS / SAFMIN, where EPS is the machine epsilon and */
00058 /*         SAFMIN is the safe minimum. */
00059 
00060 /*  INDA   (input) INTEGER */
00061 /*         The increment between A(1) and the next diagonal element of A. */
00062 /*         Typical values are */
00063 /*         = LDA+1:  square matrices with leading dimension LDA */
00064 /*         = 2:  packed upper triangular matrix, starting at A(1,1) */
00065 /*         = N:  packed lower triangular matrix, starting at A(1,1) */
00066 
00067 /*  VINDA  (input) INTEGER */
00068 /*         The change in the diagonal increment between columns of A. */
00069 /*         Typical values are */
00070 /*         = 0:  no change, the row and column increments in A are fixed */
00071 /*         = 1:  packed upper triangular matrix */
00072 /*         = -1:  packed lower triangular matrix */
00073 
00074 /*  ===================================================================== */
00075 
00076 /*     .. Local Scalars .. */
00077 /*     .. */
00078 /*     .. External Functions .. */
00079 /*     .. */
00080 /*     .. Intrinsic Functions .. */
00081 /*     .. */
00082 /*     .. Executable Statements .. */
00083 
00084     /* Parameter adjustments */
00085     --a;
00086 
00087     /* Function Body */
00088     bignum = slamch_("Epsilon") / slamch_("Safe minimum");
00089     ia = 1;
00090     ixa = *inda;
00091     i__1 = *n;
00092     for (i__ = 1; i__ <= i__1; ++i__) {
00093         i__2 = ia;
00094         i__3 = ia;
00095         r__1 = a[i__3].r;
00096         q__1.r = r__1, q__1.i = bignum;
00097         a[i__2].r = q__1.r, a[i__2].i = q__1.i;
00098         ia += ixa;
00099         ixa += *vinda;
00100 /* L10: */
00101     }
00102     return 0;
00103 } /* claipd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:30