clabrd.c
Go to the documentation of this file.
00001 /* clabrd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {0.f,0.f};
00019 static complex c_b2 = {1.f,0.f};
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int clabrd_(integer *m, integer *n, integer *nb, complex *a, 
00023         integer *lda, real *d__, real *e, complex *tauq, complex *taup, 
00024         complex *x, integer *ldx, complex *y, integer *ldy)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, 
00028             i__3;
00029     complex q__1;
00030 
00031     /* Local variables */
00032     integer i__;
00033     complex alpha;
00034     extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
00035             integer *), cgemv_(char *, integer *, integer *, complex *, 
00036             complex *, integer *, complex *, integer *, complex *, complex *, 
00037             integer *), clarfg_(integer *, complex *, complex *, 
00038             integer *, complex *), clacgv_(integer *, complex *, integer *);
00039 
00040 
00041 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00042 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00043 /*     November 2006 */
00044 
00045 /*     .. Scalar Arguments .. */
00046 /*     .. */
00047 /*     .. Array Arguments .. */
00048 /*     .. */
00049 
00050 /*  Purpose */
00051 /*  ======= */
00052 
00053 /*  CLABRD reduces the first NB rows and columns of a complex general */
00054 /*  m by n matrix A to upper or lower real bidiagonal form by a unitary */
00055 /*  transformation Q' * A * P, and returns the matrices X and Y which */
00056 /*  are needed to apply the transformation to the unreduced part of A. */
00057 
00058 /*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
00059 /*  bidiagonal form. */
00060 
00061 /*  This is an auxiliary routine called by CGEBRD */
00062 
00063 /*  Arguments */
00064 /*  ========= */
00065 
00066 /*  M       (input) INTEGER */
00067 /*          The number of rows in the matrix A. */
00068 
00069 /*  N       (input) INTEGER */
00070 /*          The number of columns in the matrix A. */
00071 
00072 /*  NB      (input) INTEGER */
00073 /*          The number of leading rows and columns of A to be reduced. */
00074 
00075 /*  A       (input/output) COMPLEX array, dimension (LDA,N) */
00076 /*          On entry, the m by n general matrix to be reduced. */
00077 /*          On exit, the first NB rows and columns of the matrix are */
00078 /*          overwritten; the rest of the array is unchanged. */
00079 /*          If m >= n, elements on and below the diagonal in the first NB */
00080 /*            columns, with the array TAUQ, represent the unitary */
00081 /*            matrix Q as a product of elementary reflectors; and */
00082 /*            elements above the diagonal in the first NB rows, with the */
00083 /*            array TAUP, represent the unitary matrix P as a product */
00084 /*            of elementary reflectors. */
00085 /*          If m < n, elements below the diagonal in the first NB */
00086 /*            columns, with the array TAUQ, represent the unitary */
00087 /*            matrix Q as a product of elementary reflectors, and */
00088 /*            elements on and above the diagonal in the first NB rows, */
00089 /*            with the array TAUP, represent the unitary matrix P as */
00090 /*            a product of elementary reflectors. */
00091 /*          See Further Details. */
00092 
00093 /*  LDA     (input) INTEGER */
00094 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00095 
00096 /*  D       (output) REAL array, dimension (NB) */
00097 /*          The diagonal elements of the first NB rows and columns of */
00098 /*          the reduced matrix.  D(i) = A(i,i). */
00099 
00100 /*  E       (output) REAL array, dimension (NB) */
00101 /*          The off-diagonal elements of the first NB rows and columns of */
00102 /*          the reduced matrix. */
00103 
00104 /*  TAUQ    (output) COMPLEX array dimension (NB) */
00105 /*          The scalar factors of the elementary reflectors which */
00106 /*          represent the unitary matrix Q. See Further Details. */
00107 
00108 /*  TAUP    (output) COMPLEX array, dimension (NB) */
00109 /*          The scalar factors of the elementary reflectors which */
00110 /*          represent the unitary matrix P. See Further Details. */
00111 
00112 /*  X       (output) COMPLEX array, dimension (LDX,NB) */
00113 /*          The m-by-nb matrix X required to update the unreduced part */
00114 /*          of A. */
00115 
00116 /*  LDX     (input) INTEGER */
00117 /*          The leading dimension of the array X. LDX >= max(1,M). */
00118 
00119 /*  Y       (output) COMPLEX array, dimension (LDY,NB) */
00120 /*          The n-by-nb matrix Y required to update the unreduced part */
00121 /*          of A. */
00122 
00123 /*  LDY     (input) INTEGER */
00124 /*          The leading dimension of the array Y. LDY >= max(1,N). */
00125 
00126 /*  Further Details */
00127 /*  =============== */
00128 
00129 /*  The matrices Q and P are represented as products of elementary */
00130 /*  reflectors: */
00131 
00132 /*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb) */
00133 
00134 /*  Each H(i) and G(i) has the form: */
00135 
00136 /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
00137 
00138 /*  where tauq and taup are complex scalars, and v and u are complex */
00139 /*  vectors. */
00140 
00141 /*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
00142 /*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
00143 /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
00144 
00145 /*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
00146 /*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
00147 /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
00148 
00149 /*  The elements of the vectors v and u together form the m-by-nb matrix */
00150 /*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply */
00151 /*  the transformation to the unreduced part of the matrix, using a block */
00152 /*  update of the form:  A := A - V*Y' - X*U'. */
00153 
00154 /*  The contents of A on exit are illustrated by the following examples */
00155 /*  with nb = 2: */
00156 
00157 /*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
00158 
00159 /*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 ) */
00160 /*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 ) */
00161 /*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  ) */
00162 /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
00163 /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
00164 /*    (  v1  v2  a   a   a  ) */
00165 
00166 /*  where a denotes an element of the original matrix which is unchanged, */
00167 /*  vi denotes an element of the vector defining H(i), and ui an element */
00168 /*  of the vector defining G(i). */
00169 
00170 /*  ===================================================================== */
00171 
00172 /*     .. Parameters .. */
00173 /*     .. */
00174 /*     .. Local Scalars .. */
00175 /*     .. */
00176 /*     .. External Subroutines .. */
00177 /*     .. */
00178 /*     .. Intrinsic Functions .. */
00179 /*     .. */
00180 /*     .. Executable Statements .. */
00181 
00182 /*     Quick return if possible */
00183 
00184     /* Parameter adjustments */
00185     a_dim1 = *lda;
00186     a_offset = 1 + a_dim1;
00187     a -= a_offset;
00188     --d__;
00189     --e;
00190     --tauq;
00191     --taup;
00192     x_dim1 = *ldx;
00193     x_offset = 1 + x_dim1;
00194     x -= x_offset;
00195     y_dim1 = *ldy;
00196     y_offset = 1 + y_dim1;
00197     y -= y_offset;
00198 
00199     /* Function Body */
00200     if (*m <= 0 || *n <= 0) {
00201         return 0;
00202     }
00203 
00204     if (*m >= *n) {
00205 
00206 /*        Reduce to upper bidiagonal form */
00207 
00208         i__1 = *nb;
00209         for (i__ = 1; i__ <= i__1; ++i__) {
00210 
00211 /*           Update A(i:m,i) */
00212 
00213             i__2 = i__ - 1;
00214             clacgv_(&i__2, &y[i__ + y_dim1], ldy);
00215             i__2 = *m - i__ + 1;
00216             i__3 = i__ - 1;
00217             q__1.r = -1.f, q__1.i = -0.f;
00218             cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda, 
00219                      &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
00220                     c__1);
00221             i__2 = i__ - 1;
00222             clacgv_(&i__2, &y[i__ + y_dim1], ldy);
00223             i__2 = *m - i__ + 1;
00224             i__3 = i__ - 1;
00225             q__1.r = -1.f, q__1.i = -0.f;
00226             cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + x_dim1], ldx, 
00227                      &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ * 
00228                     a_dim1], &c__1);
00229 
00230 /*           Generate reflection Q(i) to annihilate A(i+1:m,i) */
00231 
00232             i__2 = i__ + i__ * a_dim1;
00233             alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00234             i__2 = *m - i__ + 1;
00235 /* Computing MIN */
00236             i__3 = i__ + 1;
00237             clarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, &
00238                     tauq[i__]);
00239             i__2 = i__;
00240             d__[i__2] = alpha.r;
00241             if (i__ < *n) {
00242                 i__2 = i__ + i__ * a_dim1;
00243                 a[i__2].r = 1.f, a[i__2].i = 0.f;
00244 
00245 /*              Compute Y(i+1:n,i) */
00246 
00247                 i__2 = *m - i__ + 1;
00248                 i__3 = *n - i__;
00249                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
00250                         i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
00251                         c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
00252                 i__2 = *m - i__ + 1;
00253                 i__3 = i__ - 1;
00254                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 
00255                         a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
00256                         y[i__ * y_dim1 + 1], &c__1);
00257                 i__2 = *n - i__;
00258                 i__3 = i__ - 1;
00259                 q__1.r = -1.f, q__1.i = -0.f;
00260                 cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 + 
00261                         y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
00262                         i__ + 1 + i__ * y_dim1], &c__1);
00263                 i__2 = *m - i__ + 1;
00264                 i__3 = i__ - 1;
00265                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ + 
00266                         x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
00267                         y[i__ * y_dim1 + 1], &c__1);
00268                 i__2 = i__ - 1;
00269                 i__3 = *n - i__;
00270                 q__1.r = -1.f, q__1.i = -0.f;
00271                 cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ + 
00272                         1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
00273                         c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
00274                 i__2 = *n - i__;
00275                 cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
00276 
00277 /*              Update A(i,i+1:n) */
00278 
00279                 i__2 = *n - i__;
00280                 clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
00281                 clacgv_(&i__, &a[i__ + a_dim1], lda);
00282                 i__2 = *n - i__;
00283                 q__1.r = -1.f, q__1.i = -0.f;
00284                 cgemv_("No transpose", &i__2, &i__, &q__1, &y[i__ + 1 + 
00285                         y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
00286                         i__ + 1) * a_dim1], lda);
00287                 clacgv_(&i__, &a[i__ + a_dim1], lda);
00288                 i__2 = i__ - 1;
00289                 clacgv_(&i__2, &x[i__ + x_dim1], ldx);
00290                 i__2 = i__ - 1;
00291                 i__3 = *n - i__;
00292                 q__1.r = -1.f, q__1.i = -0.f;
00293                 cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ + 
00294                         1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
00295                         a[i__ + (i__ + 1) * a_dim1], lda);
00296                 i__2 = i__ - 1;
00297                 clacgv_(&i__2, &x[i__ + x_dim1], ldx);
00298 
00299 /*              Generate reflection P(i) to annihilate A(i,i+2:n) */
00300 
00301                 i__2 = i__ + (i__ + 1) * a_dim1;
00302                 alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00303                 i__2 = *n - i__;
00304 /* Computing MIN */
00305                 i__3 = i__ + 2;
00306                 clarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, &
00307                         taup[i__]);
00308                 i__2 = i__;
00309                 e[i__2] = alpha.r;
00310                 i__2 = i__ + (i__ + 1) * a_dim1;
00311                 a[i__2].r = 1.f, a[i__2].i = 0.f;
00312 
00313 /*              Compute X(i+1:m,i) */
00314 
00315                 i__2 = *m - i__;
00316                 i__3 = *n - i__;
00317                 cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__ 
00318                         + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], 
00319                         lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
00320                 i__2 = *n - i__;
00321                 cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1 
00322                         + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
00323                         c_b1, &x[i__ * x_dim1 + 1], &c__1);
00324                 i__2 = *m - i__;
00325                 q__1.r = -1.f, q__1.i = -0.f;
00326                 cgemv_("No transpose", &i__2, &i__, &q__1, &a[i__ + 1 + 
00327                         a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00328                         i__ + 1 + i__ * x_dim1], &c__1);
00329                 i__2 = i__ - 1;
00330                 i__3 = *n - i__;
00331                 cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) * 
00332                         a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
00333                         c_b1, &x[i__ * x_dim1 + 1], &c__1);
00334                 i__2 = *m - i__;
00335                 i__3 = i__ - 1;
00336                 q__1.r = -1.f, q__1.i = -0.f;
00337                 cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 + 
00338                         x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00339                         i__ + 1 + i__ * x_dim1], &c__1);
00340                 i__2 = *m - i__;
00341                 cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
00342                 i__2 = *n - i__;
00343                 clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
00344             }
00345 /* L10: */
00346         }
00347     } else {
00348 
00349 /*        Reduce to lower bidiagonal form */
00350 
00351         i__1 = *nb;
00352         for (i__ = 1; i__ <= i__1; ++i__) {
00353 
00354 /*           Update A(i,i:n) */
00355 
00356             i__2 = *n - i__ + 1;
00357             clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00358             i__2 = i__ - 1;
00359             clacgv_(&i__2, &a[i__ + a_dim1], lda);
00360             i__2 = *n - i__ + 1;
00361             i__3 = i__ - 1;
00362             q__1.r = -1.f, q__1.i = -0.f;
00363             cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + y_dim1], ldy, 
00364                      &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], 
00365                     lda);
00366             i__2 = i__ - 1;
00367             clacgv_(&i__2, &a[i__ + a_dim1], lda);
00368             i__2 = i__ - 1;
00369             clacgv_(&i__2, &x[i__ + x_dim1], ldx);
00370             i__2 = i__ - 1;
00371             i__3 = *n - i__ + 1;
00372             q__1.r = -1.f, q__1.i = -0.f;
00373             cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[i__ * 
00374                     a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ + 
00375                     i__ * a_dim1], lda);
00376             i__2 = i__ - 1;
00377             clacgv_(&i__2, &x[i__ + x_dim1], ldx);
00378 
00379 /*           Generate reflection P(i) to annihilate A(i,i+1:n) */
00380 
00381             i__2 = i__ + i__ * a_dim1;
00382             alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00383             i__2 = *n - i__ + 1;
00384 /* Computing MIN */
00385             i__3 = i__ + 1;
00386             clarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, &
00387                     taup[i__]);
00388             i__2 = i__;
00389             d__[i__2] = alpha.r;
00390             if (i__ < *m) {
00391                 i__2 = i__ + i__ * a_dim1;
00392                 a[i__2].r = 1.f, a[i__2].i = 0.f;
00393 
00394 /*              Compute X(i+1:m,i) */
00395 
00396                 i__2 = *m - i__;
00397                 i__3 = *n - i__ + 1;
00398                 cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
00399                          a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
00400                         i__ + 1 + i__ * x_dim1], &c__1);
00401                 i__2 = *n - i__ + 1;
00402                 i__3 = i__ - 1;
00403                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ + 
00404                         y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
00405                         i__ * x_dim1 + 1], &c__1);
00406                 i__2 = *m - i__;
00407                 i__3 = i__ - 1;
00408                 q__1.r = -1.f, q__1.i = -0.f;
00409                 cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + 
00410                         a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00411                         i__ + 1 + i__ * x_dim1], &c__1);
00412                 i__2 = i__ - 1;
00413                 i__3 = *n - i__ + 1;
00414                 cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 + 
00415                         1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ * 
00416                         x_dim1 + 1], &c__1);
00417                 i__2 = *m - i__;
00418                 i__3 = i__ - 1;
00419                 q__1.r = -1.f, q__1.i = -0.f;
00420                 cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 + 
00421                         x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00422                         i__ + 1 + i__ * x_dim1], &c__1);
00423                 i__2 = *m - i__;
00424                 cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
00425                 i__2 = *n - i__ + 1;
00426                 clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00427 
00428 /*              Update A(i+1:m,i) */
00429 
00430                 i__2 = i__ - 1;
00431                 clacgv_(&i__2, &y[i__ + y_dim1], ldy);
00432                 i__2 = *m - i__;
00433                 i__3 = i__ - 1;
00434                 q__1.r = -1.f, q__1.i = -0.f;
00435                 cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + 
00436                         a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + 
00437                         1 + i__ * a_dim1], &c__1);
00438                 i__2 = i__ - 1;
00439                 clacgv_(&i__2, &y[i__ + y_dim1], ldy);
00440                 i__2 = *m - i__;
00441                 q__1.r = -1.f, q__1.i = -0.f;
00442                 cgemv_("No transpose", &i__2, &i__, &q__1, &x[i__ + 1 + 
00443                         x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
00444                         i__ + 1 + i__ * a_dim1], &c__1);
00445 
00446 /*              Generate reflection Q(i) to annihilate A(i+2:m,i) */
00447 
00448                 i__2 = i__ + 1 + i__ * a_dim1;
00449                 alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00450                 i__2 = *m - i__;
00451 /* Computing MIN */
00452                 i__3 = i__ + 2;
00453                 clarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, 
00454                          &tauq[i__]);
00455                 i__2 = i__;
00456                 e[i__2] = alpha.r;
00457                 i__2 = i__ + 1 + i__ * a_dim1;
00458                 a[i__2].r = 1.f, a[i__2].i = 0.f;
00459 
00460 /*              Compute Y(i+1:n,i) */
00461 
00462                 i__2 = *m - i__;
00463                 i__3 = *n - i__;
00464                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 
00465                         + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
00466 , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
00467                 i__2 = *m - i__;
00468                 i__3 = i__ - 1;
00469                 cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 
00470                         + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
00471                         c_b1, &y[i__ * y_dim1 + 1], &c__1);
00472                 i__2 = *n - i__;
00473                 i__3 = i__ - 1;
00474                 q__1.r = -1.f, q__1.i = -0.f;
00475                 cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 + 
00476                         y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
00477                         i__ + 1 + i__ * y_dim1], &c__1);
00478                 i__2 = *m - i__;
00479                 cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1 
00480                         + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
00481                         c_b1, &y[i__ * y_dim1 + 1], &c__1);
00482                 i__2 = *n - i__;
00483                 q__1.r = -1.f, q__1.i = -0.f;
00484                 cgemv_("Conjugate transpose", &i__, &i__2, &q__1, &a[(i__ + 1)
00485                          * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
00486                         c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
00487                 i__2 = *n - i__;
00488                 cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
00489             } else {
00490                 i__2 = *n - i__ + 1;
00491                 clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00492             }
00493 /* L20: */
00494         }
00495     }
00496     return 0;
00497 
00498 /*     End of CLABRD */
00499 
00500 } /* clabrd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:29