00001 /* chpgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int chpgv_(integer *itype, char *jobz, char *uplo, integer * 00021 n, complex *ap, complex *bp, real *w, complex *z__, integer *ldz, 00022 complex *work, real *rwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer z_dim1, z_offset, i__1; 00026 00027 /* Local variables */ 00028 integer j, neig; 00029 extern logical lsame_(char *, char *); 00030 extern /* Subroutine */ int chpev_(char *, char *, integer *, complex *, 00031 real *, complex *, integer *, complex *, real *, integer *); 00032 char trans[1]; 00033 extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, 00034 complex *, complex *, integer *); 00035 logical upper; 00036 extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, 00037 complex *, complex *, integer *); 00038 logical wantz; 00039 extern /* Subroutine */ int xerbla_(char *, integer *), chpgst_( 00040 integer *, char *, integer *, complex *, complex *, integer *), cpptrf_(char *, integer *, complex *, integer *); 00041 00042 00043 /* -- LAPACK driver routine (version 3.2) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* CHPGV computes all the eigenvalues and, optionally, the eigenvectors */ 00056 /* of a complex generalized Hermitian-definite eigenproblem, of the form */ 00057 /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */ 00058 /* Here A and B are assumed to be Hermitian, stored in packed format, */ 00059 /* and B is also positive definite. */ 00060 00061 /* Arguments */ 00062 /* ========= */ 00063 00064 /* ITYPE (input) INTEGER */ 00065 /* Specifies the problem type to be solved: */ 00066 /* = 1: A*x = (lambda)*B*x */ 00067 /* = 2: A*B*x = (lambda)*x */ 00068 /* = 3: B*A*x = (lambda)*x */ 00069 00070 /* JOBZ (input) CHARACTER*1 */ 00071 /* = 'N': Compute eigenvalues only; */ 00072 /* = 'V': Compute eigenvalues and eigenvectors. */ 00073 00074 /* UPLO (input) CHARACTER*1 */ 00075 /* = 'U': Upper triangles of A and B are stored; */ 00076 /* = 'L': Lower triangles of A and B are stored. */ 00077 00078 /* N (input) INTEGER */ 00079 /* The order of the matrices A and B. N >= 0. */ 00080 00081 /* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ 00082 /* On entry, the upper or lower triangle of the Hermitian matrix */ 00083 /* A, packed columnwise in a linear array. The j-th column of A */ 00084 /* is stored in the array AP as follows: */ 00085 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00086 /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ 00087 00088 /* On exit, the contents of AP are destroyed. */ 00089 00090 /* BP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ 00091 /* On entry, the upper or lower triangle of the Hermitian matrix */ 00092 /* B, packed columnwise in a linear array. The j-th column of B */ 00093 /* is stored in the array BP as follows: */ 00094 /* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */ 00095 /* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */ 00096 00097 /* On exit, the triangular factor U or L from the Cholesky */ 00098 /* factorization B = U**H*U or B = L*L**H, in the same storage */ 00099 /* format as B. */ 00100 00101 /* W (output) REAL array, dimension (N) */ 00102 /* If INFO = 0, the eigenvalues in ascending order. */ 00103 00104 /* Z (output) COMPLEX array, dimension (LDZ, N) */ 00105 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00106 /* eigenvectors. The eigenvectors are normalized as follows: */ 00107 /* if ITYPE = 1 or 2, Z**H*B*Z = I; */ 00108 /* if ITYPE = 3, Z**H*inv(B)*Z = I. */ 00109 /* If JOBZ = 'N', then Z is not referenced. */ 00110 00111 /* LDZ (input) INTEGER */ 00112 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00113 /* JOBZ = 'V', LDZ >= max(1,N). */ 00114 00115 /* WORK (workspace) COMPLEX array, dimension (max(1, 2*N-1)) */ 00116 00117 /* RWORK (workspace) REAL array, dimension (max(1, 3*N-2)) */ 00118 00119 /* INFO (output) INTEGER */ 00120 /* = 0: successful exit */ 00121 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00122 /* > 0: CPPTRF or CHPEV returned an error code: */ 00123 /* <= N: if INFO = i, CHPEV failed to converge; */ 00124 /* i off-diagonal elements of an intermediate */ 00125 /* tridiagonal form did not convergeto zero; */ 00126 /* > N: if INFO = N + i, for 1 <= i <= n, then the leading */ 00127 /* minor of order i of B is not positive definite. */ 00128 /* The factorization of B could not be completed and */ 00129 /* no eigenvalues or eigenvectors were computed. */ 00130 00131 /* ===================================================================== */ 00132 00133 /* .. Local Scalars .. */ 00134 /* .. */ 00135 /* .. External Functions .. */ 00136 /* .. */ 00137 /* .. External Subroutines .. */ 00138 /* .. */ 00139 /* .. Executable Statements .. */ 00140 00141 /* Test the input parameters. */ 00142 00143 /* Parameter adjustments */ 00144 --ap; 00145 --bp; 00146 --w; 00147 z_dim1 = *ldz; 00148 z_offset = 1 + z_dim1; 00149 z__ -= z_offset; 00150 --work; 00151 --rwork; 00152 00153 /* Function Body */ 00154 wantz = lsame_(jobz, "V"); 00155 upper = lsame_(uplo, "U"); 00156 00157 *info = 0; 00158 if (*itype < 1 || *itype > 3) { 00159 *info = -1; 00160 } else if (! (wantz || lsame_(jobz, "N"))) { 00161 *info = -2; 00162 } else if (! (upper || lsame_(uplo, "L"))) { 00163 *info = -3; 00164 } else if (*n < 0) { 00165 *info = -4; 00166 } else if (*ldz < 1 || wantz && *ldz < *n) { 00167 *info = -9; 00168 } 00169 if (*info != 0) { 00170 i__1 = -(*info); 00171 xerbla_("CHPGV ", &i__1); 00172 return 0; 00173 } 00174 00175 /* Quick return if possible */ 00176 00177 if (*n == 0) { 00178 return 0; 00179 } 00180 00181 /* Form a Cholesky factorization of B. */ 00182 00183 cpptrf_(uplo, n, &bp[1], info); 00184 if (*info != 0) { 00185 *info = *n + *info; 00186 return 0; 00187 } 00188 00189 /* Transform problem to standard eigenvalue problem and solve. */ 00190 00191 chpgst_(itype, uplo, n, &ap[1], &bp[1], info); 00192 chpev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], & 00193 rwork[1], info); 00194 00195 if (wantz) { 00196 00197 /* Backtransform eigenvectors to the original problem. */ 00198 00199 neig = *n; 00200 if (*info > 0) { 00201 neig = *info - 1; 00202 } 00203 if (*itype == 1 || *itype == 2) { 00204 00205 /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ 00206 /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ 00207 00208 if (upper) { 00209 *(unsigned char *)trans = 'N'; 00210 } else { 00211 *(unsigned char *)trans = 'C'; 00212 } 00213 00214 i__1 = neig; 00215 for (j = 1; j <= i__1; ++j) { 00216 ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 00217 1], &c__1); 00218 /* L10: */ 00219 } 00220 00221 } else if (*itype == 3) { 00222 00223 /* For B*A*x=(lambda)*x; */ 00224 /* backtransform eigenvectors: x = L*y or U'*y */ 00225 00226 if (upper) { 00227 *(unsigned char *)trans = 'C'; 00228 } else { 00229 *(unsigned char *)trans = 'N'; 00230 } 00231 00232 i__1 = neig; 00233 for (j = 1; j <= i__1; ++j) { 00234 ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 00235 1], &c__1); 00236 /* L20: */ 00237 } 00238 } 00239 } 00240 return 0; 00241 00242 /* End of CHPGV */ 00243 00244 } /* chpgv_ */