chpevd.c
Go to the documentation of this file.
00001 /* chpevd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int chpevd_(char *jobz, char *uplo, integer *n, complex *ap, 
00021         real *w, complex *z__, integer *ldz, complex *work, integer *lwork, 
00022         real *rwork, integer *lrwork, integer *iwork, integer *liwork, 
00023         integer *info)
00024 {
00025     /* System generated locals */
00026     integer z_dim1, z_offset, i__1;
00027     real r__1;
00028 
00029     /* Builtin functions */
00030     double sqrt(doublereal);
00031 
00032     /* Local variables */
00033     real eps;
00034     integer inde;
00035     real anrm;
00036     integer imax;
00037     real rmin, rmax, sigma;
00038     extern logical lsame_(char *, char *);
00039     integer iinfo;
00040     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00041     integer lwmin, llrwk, llwrk;
00042     logical wantz;
00043     integer iscale;
00044     extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
00045     extern /* Subroutine */ int cstedc_(char *, integer *, real *, real *, 
00046             complex *, integer *, complex *, integer *, real *, integer *, 
00047             integer *, integer *, integer *);
00048     extern doublereal slamch_(char *);
00049     extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
00050             *);
00051     real safmin;
00052     extern /* Subroutine */ int xerbla_(char *, integer *);
00053     real bignum;
00054     integer indtau;
00055     extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
00056             real *, complex *, integer *);
00057     integer indrwk, indwrk, liwmin;
00058     extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
00059     integer lrwmin;
00060     extern /* Subroutine */ int cupmtr_(char *, char *, char *, integer *, 
00061             integer *, complex *, complex *, complex *, integer *, complex *, 
00062             integer *);
00063     real smlnum;
00064     logical lquery;
00065 
00066 
00067 /*  -- LAPACK driver routine (version 3.2) -- */
00068 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00069 /*     November 2006 */
00070 
00071 /*     .. Scalar Arguments .. */
00072 /*     .. */
00073 /*     .. Array Arguments .. */
00074 /*     .. */
00075 
00076 /*  Purpose */
00077 /*  ======= */
00078 
00079 /*  CHPEVD computes all the eigenvalues and, optionally, eigenvectors of */
00080 /*  a complex Hermitian matrix A in packed storage.  If eigenvectors are */
00081 /*  desired, it uses a divide and conquer algorithm. */
00082 
00083 /*  The divide and conquer algorithm makes very mild assumptions about */
00084 /*  floating point arithmetic. It will work on machines with a guard */
00085 /*  digit in add/subtract, or on those binary machines without guard */
00086 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
00087 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
00088 /*  without guard digits, but we know of none. */
00089 
00090 /*  Arguments */
00091 /*  ========= */
00092 
00093 /*  JOBZ    (input) CHARACTER*1 */
00094 /*          = 'N':  Compute eigenvalues only; */
00095 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00096 
00097 /*  UPLO    (input) CHARACTER*1 */
00098 /*          = 'U':  Upper triangle of A is stored; */
00099 /*          = 'L':  Lower triangle of A is stored. */
00100 
00101 /*  N       (input) INTEGER */
00102 /*          The order of the matrix A.  N >= 0. */
00103 
00104 /*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
00105 /*          On entry, the upper or lower triangle of the Hermitian matrix */
00106 /*          A, packed columnwise in a linear array.  The j-th column of A */
00107 /*          is stored in the array AP as follows: */
00108 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
00109 /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
00110 
00111 /*          On exit, AP is overwritten by values generated during the */
00112 /*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
00113 /*          and first superdiagonal of the tridiagonal matrix T overwrite */
00114 /*          the corresponding elements of A, and if UPLO = 'L', the */
00115 /*          diagonal and first subdiagonal of T overwrite the */
00116 /*          corresponding elements of A. */
00117 
00118 /*  W       (output) REAL array, dimension (N) */
00119 /*          If INFO = 0, the eigenvalues in ascending order. */
00120 
00121 /*  Z       (output) COMPLEX array, dimension (LDZ, N) */
00122 /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
00123 /*          eigenvectors of the matrix A, with the i-th column of Z */
00124 /*          holding the eigenvector associated with W(i). */
00125 /*          If JOBZ = 'N', then Z is not referenced. */
00126 
00127 /*  LDZ     (input) INTEGER */
00128 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00129 /*          JOBZ = 'V', LDZ >= max(1,N). */
00130 
00131 /*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
00132 /*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */
00133 
00134 /*  LWORK   (input) INTEGER */
00135 /*          The dimension of array WORK. */
00136 /*          If N <= 1,               LWORK must be at least 1. */
00137 /*          If JOBZ = 'N' and N > 1, LWORK must be at least N. */
00138 /*          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. */
00139 
00140 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00141 /*          only calculates the required sizes of the WORK, RWORK and */
00142 /*          IWORK arrays, returns these values as the first entries of */
00143 /*          the WORK, RWORK and IWORK arrays, and no error message */
00144 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00145 
00146 /*  RWORK   (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
00147 /*          On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */
00148 
00149 /*  LRWORK  (input) INTEGER */
00150 /*          The dimension of array RWORK. */
00151 /*          If N <= 1,               LRWORK must be at least 1. */
00152 /*          If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
00153 /*          If JOBZ = 'V' and N > 1, LRWORK must be at least */
00154 /*                    1 + 5*N + 2*N**2. */
00155 
00156 /*          If LRWORK = -1, then a workspace query is assumed; the */
00157 /*          routine only calculates the required sizes of the WORK, RWORK */
00158 /*          and IWORK arrays, returns these values as the first entries */
00159 /*          of the WORK, RWORK and IWORK arrays, and no error message */
00160 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00161 
00162 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00163 /*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
00164 
00165 /*  LIWORK  (input) INTEGER */
00166 /*          The dimension of array IWORK. */
00167 /*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. */
00168 /*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
00169 
00170 /*          If LIWORK = -1, then a workspace query is assumed; the */
00171 /*          routine only calculates the required sizes of the WORK, RWORK */
00172 /*          and IWORK arrays, returns these values as the first entries */
00173 /*          of the WORK, RWORK and IWORK arrays, and no error message */
00174 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00175 
00176 /*  INFO    (output) INTEGER */
00177 /*          = 0:  successful exit */
00178 /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
00179 /*          > 0:  if INFO = i, the algorithm failed to converge; i */
00180 /*                off-diagonal elements of an intermediate tridiagonal */
00181 /*                form did not converge to zero. */
00182 
00183 /*  ===================================================================== */
00184 
00185 /*     .. Parameters .. */
00186 /*     .. */
00187 /*     .. Local Scalars .. */
00188 /*     .. */
00189 /*     .. External Functions .. */
00190 /*     .. */
00191 /*     .. External Subroutines .. */
00192 /*     .. */
00193 /*     .. Intrinsic Functions .. */
00194 /*     .. */
00195 /*     .. Executable Statements .. */
00196 
00197 /*     Test the input parameters. */
00198 
00199     /* Parameter adjustments */
00200     --ap;
00201     --w;
00202     z_dim1 = *ldz;
00203     z_offset = 1 + z_dim1;
00204     z__ -= z_offset;
00205     --work;
00206     --rwork;
00207     --iwork;
00208 
00209     /* Function Body */
00210     wantz = lsame_(jobz, "V");
00211     lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
00212 
00213     *info = 0;
00214     if (! (wantz || lsame_(jobz, "N"))) {
00215         *info = -1;
00216     } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
00217             "U"))) {
00218         *info = -2;
00219     } else if (*n < 0) {
00220         *info = -3;
00221     } else if (*ldz < 1 || wantz && *ldz < *n) {
00222         *info = -7;
00223     }
00224 
00225     if (*info == 0) {
00226         if (*n <= 1) {
00227             lwmin = 1;
00228             liwmin = 1;
00229             lrwmin = 1;
00230         } else {
00231             if (wantz) {
00232                 lwmin = *n << 1;
00233 /* Computing 2nd power */
00234                 i__1 = *n;
00235                 lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
00236                 liwmin = *n * 5 + 3;
00237             } else {
00238                 lwmin = *n;
00239                 lrwmin = *n;
00240                 liwmin = 1;
00241             }
00242         }
00243         work[1].r = (real) lwmin, work[1].i = 0.f;
00244         rwork[1] = (real) lrwmin;
00245         iwork[1] = liwmin;
00246 
00247         if (*lwork < lwmin && ! lquery) {
00248             *info = -9;
00249         } else if (*lrwork < lrwmin && ! lquery) {
00250             *info = -11;
00251         } else if (*liwork < liwmin && ! lquery) {
00252             *info = -13;
00253         }
00254     }
00255 
00256     if (*info != 0) {
00257         i__1 = -(*info);
00258         xerbla_("CHPEVD", &i__1);
00259         return 0;
00260     } else if (lquery) {
00261         return 0;
00262     }
00263 
00264 /*     Quick return if possible */
00265 
00266     if (*n == 0) {
00267         return 0;
00268     }
00269 
00270     if (*n == 1) {
00271         w[1] = ap[1].r;
00272         if (wantz) {
00273             i__1 = z_dim1 + 1;
00274             z__[i__1].r = 1.f, z__[i__1].i = 0.f;
00275         }
00276         return 0;
00277     }
00278 
00279 /*     Get machine constants. */
00280 
00281     safmin = slamch_("Safe minimum");
00282     eps = slamch_("Precision");
00283     smlnum = safmin / eps;
00284     bignum = 1.f / smlnum;
00285     rmin = sqrt(smlnum);
00286     rmax = sqrt(bignum);
00287 
00288 /*     Scale matrix to allowable range, if necessary. */
00289 
00290     anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
00291     iscale = 0;
00292     if (anrm > 0.f && anrm < rmin) {
00293         iscale = 1;
00294         sigma = rmin / anrm;
00295     } else if (anrm > rmax) {
00296         iscale = 1;
00297         sigma = rmax / anrm;
00298     }
00299     if (iscale == 1) {
00300         i__1 = *n * (*n + 1) / 2;
00301         csscal_(&i__1, &sigma, &ap[1], &c__1);
00302     }
00303 
00304 /*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */
00305 
00306     inde = 1;
00307     indtau = 1;
00308     indrwk = inde + *n;
00309     indwrk = indtau + *n;
00310     llwrk = *lwork - indwrk + 1;
00311     llrwk = *lrwork - indrwk + 1;
00312     chptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);
00313 
00314 /*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
00315 /*     CUPGTR to generate the orthogonal matrix, then call CSTEDC. */
00316 
00317     if (! wantz) {
00318         ssterf_(n, &w[1], &rwork[inde], info);
00319     } else {
00320         cstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[
00321                 indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, 
00322                 info);
00323         cupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 
00324                 ldz, &work[indwrk], &iinfo);
00325     }
00326 
00327 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
00328 
00329     if (iscale == 1) {
00330         if (*info == 0) {
00331             imax = *n;
00332         } else {
00333             imax = *info - 1;
00334         }
00335         r__1 = 1.f / sigma;
00336         sscal_(&imax, &r__1, &w[1], &c__1);
00337     }
00338 
00339     work[1].r = (real) lwmin, work[1].i = 0.f;
00340     rwork[1] = (real) lrwmin;
00341     iwork[1] = liwmin;
00342     return 0;
00343 
00344 /*     End of CHPEVD */
00345 
00346 } /* chpevd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:29