00001 /* chesvxx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int chesvxx_(char *fact, char *uplo, integer *n, integer * 00017 nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer * 00018 ipiv, char *equed, real *s, complex *b, integer *ldb, complex *x, 00019 integer *ldx, real *rcond, real *rpvgrw, real *berr, integer * 00020 n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__, integer * 00021 nparams, real *params, complex *work, real *rwork, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 00025 x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00026 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00027 real r__1, r__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 real amax, smin, smax; 00032 extern doublereal cla_herpvgrw__(char *, integer *, integer *, complex *, 00033 integer *, complex *, integer *, integer *, real *, ftnlen); 00034 extern logical lsame_(char *, char *); 00035 real scond; 00036 logical equil, rcequ; 00037 extern /* Subroutine */ int claqhe_(char *, integer *, complex *, integer 00038 *, real *, real *, real *, char *); 00039 extern doublereal slamch_(char *); 00040 logical nofact; 00041 extern /* Subroutine */ int chetrf_(char *, integer *, complex *, integer 00042 *, integer *, complex *, integer *, integer *), clacpy_( 00043 char *, integer *, integer *, complex *, integer *, complex *, 00044 integer *), xerbla_(char *, integer *); 00045 real bignum; 00046 integer infequ; 00047 extern /* Subroutine */ int chetrs_(char *, integer *, integer *, complex 00048 *, integer *, integer *, complex *, integer *, integer *); 00049 real smlnum; 00050 extern /* Subroutine */ int clascl2_(integer *, integer *, real *, 00051 complex *, integer *), cheequb_(char *, integer *, complex *, 00052 integer *, real *, real *, real *, complex *, integer *), 00053 cherfsx_(char *, char *, integer *, integer *, complex *, integer 00054 *, complex *, integer *, integer *, real *, complex *, integer *, 00055 complex *, integer *, real *, real *, integer *, real *, real *, 00056 integer *, real *, complex *, real *, integer *); 00057 00058 00059 /* -- LAPACK driver routine (version 3.2.1) -- */ 00060 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00061 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00062 /* -- April 2009 -- */ 00063 00064 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00065 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00066 00067 /* .. */ 00068 /* .. Scalar Arguments .. */ 00069 /* .. */ 00070 /* .. Array Arguments .. */ 00071 /* .. */ 00072 00073 /* Purpose */ 00074 /* ======= */ 00075 00076 /* CHESVXX uses the diagonal pivoting factorization to compute the */ 00077 /* solution to a complex system of linear equations A * X = B, where */ 00078 /* A is an N-by-N symmetric matrix and X and B are N-by-NRHS */ 00079 /* matrices. */ 00080 00081 /* If requested, both normwise and maximum componentwise error bounds */ 00082 /* are returned. CHESVXX will return a solution with a tiny */ 00083 /* guaranteed error (O(eps) where eps is the working machine */ 00084 /* precision) unless the matrix is very ill-conditioned, in which */ 00085 /* case a warning is returned. Relevant condition numbers also are */ 00086 /* calculated and returned. */ 00087 00088 /* CHESVXX accepts user-provided factorizations and equilibration */ 00089 /* factors; see the definitions of the FACT and EQUED options. */ 00090 /* Solving with refinement and using a factorization from a previous */ 00091 /* CHESVXX call will also produce a solution with either O(eps) */ 00092 /* errors or warnings, but we cannot make that claim for general */ 00093 /* user-provided factorizations and equilibration factors if they */ 00094 /* differ from what CHESVXX would itself produce. */ 00095 00096 /* Description */ 00097 /* =========== */ 00098 00099 /* The following steps are performed: */ 00100 00101 /* 1. If FACT = 'E', real scaling factors are computed to equilibrate */ 00102 /* the system: */ 00103 00104 /* diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B */ 00105 00106 /* Whether or not the system will be equilibrated depends on the */ 00107 /* scaling of the matrix A, but if equilibration is used, A is */ 00108 /* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */ 00109 00110 /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */ 00111 /* the matrix A (after equilibration if FACT = 'E') as */ 00112 00113 /* A = U * D * U**T, if UPLO = 'U', or */ 00114 /* A = L * D * L**T, if UPLO = 'L', */ 00115 00116 /* where U (or L) is a product of permutation and unit upper (lower) */ 00117 /* triangular matrices, and D is symmetric and block diagonal with */ 00118 /* 1-by-1 and 2-by-2 diagonal blocks. */ 00119 00120 /* 3. If some D(i,i)=0, so that D is exactly singular, then the */ 00121 /* routine returns with INFO = i. Otherwise, the factored form of A */ 00122 /* is used to estimate the condition number of the matrix A (see */ 00123 /* argument RCOND). If the reciprocal of the condition number is */ 00124 /* less than machine precision, the routine still goes on to solve */ 00125 /* for X and compute error bounds as described below. */ 00126 00127 /* 4. The system of equations is solved for X using the factored form */ 00128 /* of A. */ 00129 00130 /* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */ 00131 /* the routine will use iterative refinement to try to get a small */ 00132 /* error and error bounds. Refinement calculates the residual to at */ 00133 /* least twice the working precision. */ 00134 00135 /* 6. If equilibration was used, the matrix X is premultiplied by */ 00136 /* diag(R) so that it solves the original system before */ 00137 /* equilibration. */ 00138 00139 /* Arguments */ 00140 /* ========= */ 00141 00142 /* Some optional parameters are bundled in the PARAMS array. These */ 00143 /* settings determine how refinement is performed, but often the */ 00144 /* defaults are acceptable. If the defaults are acceptable, users */ 00145 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00146 /* the PARAMS argument. */ 00147 00148 /* FACT (input) CHARACTER*1 */ 00149 /* Specifies whether or not the factored form of the matrix A is */ 00150 /* supplied on entry, and if not, whether the matrix A should be */ 00151 /* equilibrated before it is factored. */ 00152 /* = 'F': On entry, AF and IPIV contain the factored form of A. */ 00153 /* If EQUED is not 'N', the matrix A has been */ 00154 /* equilibrated with scaling factors given by S. */ 00155 /* A, AF, and IPIV are not modified. */ 00156 /* = 'N': The matrix A will be copied to AF and factored. */ 00157 /* = 'E': The matrix A will be equilibrated if necessary, then */ 00158 /* copied to AF and factored. */ 00159 00160 /* N (input) INTEGER */ 00161 /* The number of linear equations, i.e., the order of the */ 00162 /* matrix A. N >= 0. */ 00163 00164 /* NRHS (input) INTEGER */ 00165 /* The number of right hand sides, i.e., the number of columns */ 00166 /* of the matrices B and X. NRHS >= 0. */ 00167 00168 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00169 /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ 00170 /* upper triangular part of A contains the upper triangular */ 00171 /* part of the matrix A, and the strictly lower triangular */ 00172 /* part of A is not referenced. If UPLO = 'L', the leading */ 00173 /* N-by-N lower triangular part of A contains the lower */ 00174 /* triangular part of the matrix A, and the strictly upper */ 00175 /* triangular part of A is not referenced. */ 00176 00177 /* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */ 00178 /* diag(S)*A*diag(S). */ 00179 00180 /* LDA (input) INTEGER */ 00181 /* The leading dimension of the array A. LDA >= max(1,N). */ 00182 00183 /* AF (input or output) COMPLEX array, dimension (LDAF,N) */ 00184 /* If FACT = 'F', then AF is an input argument and on entry */ 00185 /* contains the block diagonal matrix D and the multipliers */ 00186 /* used to obtain the factor U or L from the factorization A = */ 00187 /* U*D*U**T or A = L*D*L**T as computed by SSYTRF. */ 00188 00189 /* If FACT = 'N', then AF is an output argument and on exit */ 00190 /* returns the block diagonal matrix D and the multipliers */ 00191 /* used to obtain the factor U or L from the factorization A = */ 00192 /* U*D*U**T or A = L*D*L**T. */ 00193 00194 /* LDAF (input) INTEGER */ 00195 /* The leading dimension of the array AF. LDAF >= max(1,N). */ 00196 00197 /* IPIV (input or output) INTEGER array, dimension (N) */ 00198 /* If FACT = 'F', then IPIV is an input argument and on entry */ 00199 /* contains details of the interchanges and the block */ 00200 /* structure of D, as determined by CHETRF. If IPIV(k) > 0, */ 00201 /* then rows and columns k and IPIV(k) were interchanged and */ 00202 /* D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and */ 00203 /* IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and */ 00204 /* -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 */ 00205 /* diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, */ 00206 /* then rows and columns k+1 and -IPIV(k) were interchanged */ 00207 /* and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ 00208 00209 /* If FACT = 'N', then IPIV is an output argument and on exit */ 00210 /* contains details of the interchanges and the block */ 00211 /* structure of D, as determined by CHETRF. */ 00212 00213 /* EQUED (input or output) CHARACTER*1 */ 00214 /* Specifies the form of equilibration that was done. */ 00215 /* = 'N': No equilibration (always true if FACT = 'N'). */ 00216 /* = 'Y': Both row and column equilibration, i.e., A has been */ 00217 /* replaced by diag(S) * A * diag(S). */ 00218 /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ 00219 /* output argument. */ 00220 00221 /* S (input or output) REAL array, dimension (N) */ 00222 /* The scale factors for A. If EQUED = 'Y', A is multiplied on */ 00223 /* the left and right by diag(S). S is an input argument if FACT = */ 00224 /* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */ 00225 /* = 'Y', each element of S must be positive. If S is output, each */ 00226 /* element of S is a power of the radix. If S is input, each element */ 00227 /* of S should be a power of the radix to ensure a reliable solution */ 00228 /* and error estimates. Scaling by powers of the radix does not cause */ 00229 /* rounding errors unless the result underflows or overflows. */ 00230 /* Rounding errors during scaling lead to refining with a matrix that */ 00231 /* is not equivalent to the input matrix, producing error estimates */ 00232 /* that may not be reliable. */ 00233 00234 /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ 00235 /* On entry, the N-by-NRHS right hand side matrix B. */ 00236 /* On exit, */ 00237 /* if EQUED = 'N', B is not modified; */ 00238 /* if EQUED = 'Y', B is overwritten by diag(S)*B; */ 00239 00240 /* LDB (input) INTEGER */ 00241 /* The leading dimension of the array B. LDB >= max(1,N). */ 00242 00243 /* X (output) COMPLEX array, dimension (LDX,NRHS) */ 00244 /* If INFO = 0, the N-by-NRHS solution matrix X to the original */ 00245 /* system of equations. Note that A and B are modified on exit if */ 00246 /* EQUED .ne. 'N', and the solution to the equilibrated system is */ 00247 /* inv(diag(S))*X. */ 00248 00249 /* LDX (input) INTEGER */ 00250 /* The leading dimension of the array X. LDX >= max(1,N). */ 00251 00252 /* RCOND (output) REAL */ 00253 /* Reciprocal scaled condition number. This is an estimate of the */ 00254 /* reciprocal Skeel condition number of the matrix A after */ 00255 /* equilibration (if done). If this is less than the machine */ 00256 /* precision (in particular, if it is zero), the matrix is singular */ 00257 /* to working precision. Note that the error may still be small even */ 00258 /* if this number is very small and the matrix appears ill- */ 00259 /* conditioned. */ 00260 00261 /* RPVGRW (output) REAL */ 00262 /* Reciprocal pivot growth. On exit, this contains the reciprocal */ 00263 /* pivot growth factor norm(A)/norm(U). The "max absolute element" */ 00264 /* norm is used. If this is much less than 1, then the stability of */ 00265 /* the LU factorization of the (equilibrated) matrix A could be poor. */ 00266 /* This also means that the solution X, estimated condition numbers, */ 00267 /* and error bounds could be unreliable. If factorization fails with */ 00268 /* 0<INFO<=N, then this contains the reciprocal pivot growth factor */ 00269 /* for the leading INFO columns of A. */ 00270 00271 /* BERR (output) REAL array, dimension (NRHS) */ 00272 /* Componentwise relative backward error. This is the */ 00273 /* componentwise relative backward error of each solution vector X(j) */ 00274 /* (i.e., the smallest relative change in any element of A or B that */ 00275 /* makes X(j) an exact solution). */ 00276 00277 /* N_ERR_BNDS (input) INTEGER */ 00278 /* Number of error bounds to return for each right hand side */ 00279 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00280 /* ERR_BNDS_COMP below. */ 00281 00282 /* ERR_BNDS_NORM (output) REAL array, dimension (NRHS, N_ERR_BNDS) */ 00283 /* For each right-hand side, this array contains information about */ 00284 /* various error bounds and condition numbers corresponding to the */ 00285 /* normwise relative error, which is defined as follows: */ 00286 00287 /* Normwise relative error in the ith solution vector: */ 00288 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00289 /* ------------------------------ */ 00290 /* max_j abs(X(j,i)) */ 00291 00292 /* The array is indexed by the type of error information as described */ 00293 /* below. There currently are up to three pieces of information */ 00294 /* returned. */ 00295 00296 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00297 /* right-hand side. */ 00298 00299 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00300 /* three fields: */ 00301 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00302 /* reciprocal condition number is less than the threshold */ 00303 /* sqrt(n) * slamch('Epsilon'). */ 00304 00305 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00306 /* almost certainly within a factor of 10 of the true error */ 00307 /* so long as the next entry is greater than the threshold */ 00308 /* sqrt(n) * slamch('Epsilon'). This error bound should only */ 00309 /* be trusted if the previous boolean is true. */ 00310 00311 /* err = 3 Reciprocal condition number: Estimated normwise */ 00312 /* reciprocal condition number. Compared with the threshold */ 00313 /* sqrt(n) * slamch('Epsilon') to determine if the error */ 00314 /* estimate is "guaranteed". These reciprocal condition */ 00315 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00316 /* appropriately scaled matrix Z. */ 00317 /* Let Z = S*A, where S scales each row by a power of the */ 00318 /* radix so all absolute row sums of Z are approximately 1. */ 00319 00320 /* See Lapack Working Note 165 for further details and extra */ 00321 /* cautions. */ 00322 00323 /* ERR_BNDS_COMP (output) REAL array, dimension (NRHS, N_ERR_BNDS) */ 00324 /* For each right-hand side, this array contains information about */ 00325 /* various error bounds and condition numbers corresponding to the */ 00326 /* componentwise relative error, which is defined as follows: */ 00327 00328 /* Componentwise relative error in the ith solution vector: */ 00329 /* abs(XTRUE(j,i) - X(j,i)) */ 00330 /* max_j ---------------------- */ 00331 /* abs(X(j,i)) */ 00332 00333 /* The array is indexed by the right-hand side i (on which the */ 00334 /* componentwise relative error depends), and the type of error */ 00335 /* information as described below. There currently are up to three */ 00336 /* pieces of information returned for each right-hand side. If */ 00337 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00338 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00339 /* the first (:,N_ERR_BNDS) entries are returned. */ 00340 00341 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00342 /* right-hand side. */ 00343 00344 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00345 /* three fields: */ 00346 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00347 /* reciprocal condition number is less than the threshold */ 00348 /* sqrt(n) * slamch('Epsilon'). */ 00349 00350 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00351 /* almost certainly within a factor of 10 of the true error */ 00352 /* so long as the next entry is greater than the threshold */ 00353 /* sqrt(n) * slamch('Epsilon'). This error bound should only */ 00354 /* be trusted if the previous boolean is true. */ 00355 00356 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00357 /* reciprocal condition number. Compared with the threshold */ 00358 /* sqrt(n) * slamch('Epsilon') to determine if the error */ 00359 /* estimate is "guaranteed". These reciprocal condition */ 00360 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00361 /* appropriately scaled matrix Z. */ 00362 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00363 /* current right-hand side and S scales each row of */ 00364 /* A*diag(x) by a power of the radix so all absolute row */ 00365 /* sums of Z are approximately 1. */ 00366 00367 /* See Lapack Working Note 165 for further details and extra */ 00368 /* cautions. */ 00369 00370 /* NPARAMS (input) INTEGER */ 00371 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00372 /* PARAMS array is never referenced and default values are used. */ 00373 00374 /* PARAMS (input / output) REAL array, dimension NPARAMS */ 00375 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00376 /* that entry will be filled with default value used for that */ 00377 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00378 /* are used for higher-numbered parameters. */ 00379 00380 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00381 /* refinement or not. */ 00382 /* Default: 1.0 */ 00383 /* = 0.0 : No refinement is performed, and no error bounds are */ 00384 /* computed. */ 00385 /* = 1.0 : Use the double-precision refinement algorithm, */ 00386 /* possibly with doubled-single computations if the */ 00387 /* compilation environment does not support DOUBLE */ 00388 /* PRECISION. */ 00389 /* (other values are reserved for future use) */ 00390 00391 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00392 /* computations allowed for refinement. */ 00393 /* Default: 10 */ 00394 /* Aggressive: Set to 100 to permit convergence using approximate */ 00395 /* factorizations or factorizations other than LU. If */ 00396 /* the factorization uses a technique other than */ 00397 /* Gaussian elimination, the guarantees in */ 00398 /* err_bnds_norm and err_bnds_comp may no longer be */ 00399 /* trustworthy. */ 00400 00401 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00402 /* will attempt to find a solution with small componentwise */ 00403 /* relative error in the double-precision algorithm. Positive */ 00404 /* is true, 0.0 is false. */ 00405 /* Default: 1.0 (attempt componentwise convergence) */ 00406 00407 /* WORK (workspace) COMPLEX array, dimension (2*N) */ 00408 00409 /* RWORK (workspace) REAL array, dimension (2*N) */ 00410 00411 /* INFO (output) INTEGER */ 00412 /* = 0: Successful exit. The solution to every right-hand side is */ 00413 /* guaranteed. */ 00414 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00415 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00416 /* has been completed, but the factor U is exactly singular, so */ 00417 /* the solution and error bounds could not be computed. RCOND = 0 */ 00418 /* is returned. */ 00419 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00420 /* not guaranteed. The solutions corresponding to other right- */ 00421 /* hand sides K with K > J may not be guaranteed as well, but */ 00422 /* only the first such right-hand side is reported. If a small */ 00423 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00424 /* the Jth right-hand side is the first with a normwise error */ 00425 /* bound that is not guaranteed (the smallest J such */ 00426 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00427 /* the Jth right-hand side is the first with either a normwise or */ 00428 /* componentwise error bound that is not guaranteed (the smallest */ 00429 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00430 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00431 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00432 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00433 /* ERR_BNDS_COMP. */ 00434 00435 /* ================================================================== */ 00436 00437 /* .. Parameters .. */ 00438 /* .. */ 00439 /* .. Local Scalars .. */ 00440 /* .. */ 00441 /* .. External Functions .. */ 00442 /* .. */ 00443 /* .. External Subroutines .. */ 00444 /* .. */ 00445 /* .. Intrinsic Functions .. */ 00446 /* .. */ 00447 /* .. Executable Statements .. */ 00448 00449 /* Parameter adjustments */ 00450 err_bnds_comp_dim1 = *nrhs; 00451 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00452 err_bnds_comp__ -= err_bnds_comp_offset; 00453 err_bnds_norm_dim1 = *nrhs; 00454 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00455 err_bnds_norm__ -= err_bnds_norm_offset; 00456 a_dim1 = *lda; 00457 a_offset = 1 + a_dim1; 00458 a -= a_offset; 00459 af_dim1 = *ldaf; 00460 af_offset = 1 + af_dim1; 00461 af -= af_offset; 00462 --ipiv; 00463 --s; 00464 b_dim1 = *ldb; 00465 b_offset = 1 + b_dim1; 00466 b -= b_offset; 00467 x_dim1 = *ldx; 00468 x_offset = 1 + x_dim1; 00469 x -= x_offset; 00470 --berr; 00471 --params; 00472 --work; 00473 --rwork; 00474 00475 /* Function Body */ 00476 *info = 0; 00477 nofact = lsame_(fact, "N"); 00478 equil = lsame_(fact, "E"); 00479 smlnum = slamch_("Safe minimum"); 00480 bignum = 1.f / smlnum; 00481 if (nofact || equil) { 00482 *(unsigned char *)equed = 'N'; 00483 rcequ = FALSE_; 00484 } else { 00485 rcequ = lsame_(equed, "Y"); 00486 } 00487 00488 /* Default is failure. If an input parameter is wrong or */ 00489 /* factorization fails, make everything look horrible. Only the */ 00490 /* pivot growth is set here, the rest is initialized in CHERFSX. */ 00491 00492 *rpvgrw = 0.f; 00493 00494 /* Test the input parameters. PARAMS is not tested until CHERFSX. */ 00495 00496 if (! nofact && ! equil && ! lsame_(fact, "F")) { 00497 *info = -1; 00498 } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 00499 "L")) { 00500 *info = -2; 00501 } else if (*n < 0) { 00502 *info = -3; 00503 } else if (*nrhs < 0) { 00504 *info = -4; 00505 } else if (*lda < max(1,*n)) { 00506 *info = -6; 00507 } else if (*ldaf < max(1,*n)) { 00508 *info = -8; 00509 } else if (lsame_(fact, "F") && ! (rcequ || lsame_( 00510 equed, "N"))) { 00511 *info = -9; 00512 } else { 00513 if (rcequ) { 00514 smin = bignum; 00515 smax = 0.f; 00516 i__1 = *n; 00517 for (j = 1; j <= i__1; ++j) { 00518 /* Computing MIN */ 00519 r__1 = smin, r__2 = s[j]; 00520 smin = dmin(r__1,r__2); 00521 /* Computing MAX */ 00522 r__1 = smax, r__2 = s[j]; 00523 smax = dmax(r__1,r__2); 00524 /* L10: */ 00525 } 00526 if (smin <= 0.f) { 00527 *info = -10; 00528 } else if (*n > 0) { 00529 scond = dmax(smin,smlnum) / dmin(smax,bignum); 00530 } else { 00531 scond = 1.f; 00532 } 00533 } 00534 if (*info == 0) { 00535 if (*ldb < max(1,*n)) { 00536 *info = -12; 00537 } else if (*ldx < max(1,*n)) { 00538 *info = -14; 00539 } 00540 } 00541 } 00542 00543 if (*info != 0) { 00544 i__1 = -(*info); 00545 xerbla_("CHESVXX", &i__1); 00546 return 0; 00547 } 00548 00549 if (equil) { 00550 00551 /* Compute row and column scalings to equilibrate the matrix A. */ 00552 00553 cheequb_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, &work[1], & 00554 infequ); 00555 if (infequ == 0) { 00556 00557 /* Equilibrate the matrix. */ 00558 00559 claqhe_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed); 00560 rcequ = lsame_(equed, "Y"); 00561 } 00562 } 00563 00564 /* Scale the right-hand side. */ 00565 00566 if (rcequ) { 00567 clascl2_(n, nrhs, &s[1], &b[b_offset], ldb); 00568 } 00569 00570 if (nofact || equil) { 00571 00572 /* Compute the LU factorization of A. */ 00573 00574 clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); 00575 i__1 = max(1,*n) * 5; 00576 chetrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], &i__1, 00577 info); 00578 00579 /* Return if INFO is non-zero. */ 00580 00581 if (*info > 0) { 00582 00583 /* Pivot in column INFO is exactly 0 */ 00584 /* Compute the reciprocal pivot growth factor of the */ 00585 /* leading rank-deficient INFO columns of A. */ 00586 00587 if (*n > 0) { 00588 *rpvgrw = cla_herpvgrw__(uplo, n, info, &a[a_offset], lda, & 00589 af[af_offset], ldaf, &ipiv[1], &rwork[1], (ftnlen)1); 00590 } 00591 return 0; 00592 } 00593 } 00594 00595 /* Compute the reciprocal pivot growth factor RPVGRW. */ 00596 00597 if (*n > 0) { 00598 *rpvgrw = cla_herpvgrw__(uplo, n, info, &a[a_offset], lda, &af[ 00599 af_offset], ldaf, &ipiv[1], &rwork[1], (ftnlen)1); 00600 } 00601 00602 /* Compute the solution matrix X. */ 00603 00604 clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); 00605 chetrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 00606 info); 00607 00608 /* Use iterative refinement to improve the computed solution and */ 00609 /* compute error bounds and backward error estimates for it. */ 00610 00611 cherfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, & 00612 ipiv[1], &s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, & 00613 berr[1], n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], & 00614 err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[ 00615 1], &rwork[1], info); 00616 00617 /* Scale solutions. */ 00618 00619 if (rcequ) { 00620 clascl2_(n, nrhs, &s[1], &x[x_offset], ldx); 00621 } 00622 00623 return 0; 00624 00625 /* End of CHESVXX */ 00626 00627 } /* chesvxx_ */