cherfs.c
Go to the documentation of this file.
00001 /* cherfs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {1.f,0.f};
00019 static integer c__1 = 1;
00020 
00021 /* Subroutine */ int cherfs_(char *uplo, integer *n, integer *nrhs, complex *
00022         a, integer *lda, complex *af, integer *ldaf, integer *ipiv, complex *
00023         b, integer *ldb, complex *x, integer *ldx, real *ferr, real *berr, 
00024         complex *work, real *rwork, integer *info)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
00028             x_offset, i__1, i__2, i__3, i__4, i__5;
00029     real r__1, r__2, r__3, r__4;
00030     complex q__1;
00031 
00032     /* Builtin functions */
00033     double r_imag(complex *);
00034 
00035     /* Local variables */
00036     integer i__, j, k;
00037     real s, xk;
00038     integer nz;
00039     real eps;
00040     integer kase;
00041     real safe1, safe2;
00042     extern logical lsame_(char *, char *);
00043     extern /* Subroutine */ int chemv_(char *, integer *, complex *, complex *
00044 , integer *, complex *, integer *, complex *, complex *, integer *
00045 );
00046     integer isave[3];
00047     extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
00048             complex *, integer *), caxpy_(integer *, complex *, complex *, 
00049             integer *, complex *, integer *);
00050     integer count;
00051     logical upper;
00052     extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real 
00053             *, integer *, integer *);
00054     extern doublereal slamch_(char *);
00055     real safmin;
00056     extern /* Subroutine */ int xerbla_(char *, integer *), chetrs_(
00057             char *, integer *, integer *, complex *, integer *, integer *, 
00058             complex *, integer *, integer *);
00059     real lstres;
00060 
00061 
00062 /*  -- LAPACK routine (version 3.2) -- */
00063 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00064 /*     November 2006 */
00065 
00066 /*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
00067 
00068 /*     .. Scalar Arguments .. */
00069 /*     .. */
00070 /*     .. Array Arguments .. */
00071 /*     .. */
00072 
00073 /*  Purpose */
00074 /*  ======= */
00075 
00076 /*  CHERFS improves the computed solution to a system of linear */
00077 /*  equations when the coefficient matrix is Hermitian indefinite, and */
00078 /*  provides error bounds and backward error estimates for the solution. */
00079 
00080 /*  Arguments */
00081 /*  ========= */
00082 
00083 /*  UPLO    (input) CHARACTER*1 */
00084 /*          = 'U':  Upper triangle of A is stored; */
00085 /*          = 'L':  Lower triangle of A is stored. */
00086 
00087 /*  N       (input) INTEGER */
00088 /*          The order of the matrix A.  N >= 0. */
00089 
00090 /*  NRHS    (input) INTEGER */
00091 /*          The number of right hand sides, i.e., the number of columns */
00092 /*          of the matrices B and X.  NRHS >= 0. */
00093 
00094 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00095 /*          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N */
00096 /*          upper triangular part of A contains the upper triangular part */
00097 /*          of the matrix A, and the strictly lower triangular part of A */
00098 /*          is not referenced.  If UPLO = 'L', the leading N-by-N lower */
00099 /*          triangular part of A contains the lower triangular part of */
00100 /*          the matrix A, and the strictly upper triangular part of A is */
00101 /*          not referenced. */
00102 
00103 /*  LDA     (input) INTEGER */
00104 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00105 
00106 /*  AF      (input) COMPLEX array, dimension (LDAF,N) */
00107 /*          The factored form of the matrix A.  AF contains the block */
00108 /*          diagonal matrix D and the multipliers used to obtain the */
00109 /*          factor U or L from the factorization A = U*D*U**H or */
00110 /*          A = L*D*L**H as computed by CHETRF. */
00111 
00112 /*  LDAF    (input) INTEGER */
00113 /*          The leading dimension of the array AF.  LDAF >= max(1,N). */
00114 
00115 /*  IPIV    (input) INTEGER array, dimension (N) */
00116 /*          Details of the interchanges and the block structure of D */
00117 /*          as determined by CHETRF. */
00118 
00119 /*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
00120 /*          The right hand side matrix B. */
00121 
00122 /*  LDB     (input) INTEGER */
00123 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00124 
00125 /*  X       (input/output) COMPLEX array, dimension (LDX,NRHS) */
00126 /*          On entry, the solution matrix X, as computed by CHETRS. */
00127 /*          On exit, the improved solution matrix X. */
00128 
00129 /*  LDX     (input) INTEGER */
00130 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00131 
00132 /*  FERR    (output) REAL array, dimension (NRHS) */
00133 /*          The estimated forward error bound for each solution vector */
00134 /*          X(j) (the j-th column of the solution matrix X). */
00135 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
00136 /*          is an estimated upper bound for the magnitude of the largest */
00137 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
00138 /*          largest element in X(j).  The estimate is as reliable as */
00139 /*          the estimate for RCOND, and is almost always a slight */
00140 /*          overestimate of the true error. */
00141 
00142 /*  BERR    (output) REAL array, dimension (NRHS) */
00143 /*          The componentwise relative backward error of each solution */
00144 /*          vector X(j) (i.e., the smallest relative change in */
00145 /*          any element of A or B that makes X(j) an exact solution). */
00146 
00147 /*  WORK    (workspace) COMPLEX array, dimension (2*N) */
00148 
00149 /*  RWORK   (workspace) REAL array, dimension (N) */
00150 
00151 /*  INFO    (output) INTEGER */
00152 /*          = 0:  successful exit */
00153 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00154 
00155 /*  Internal Parameters */
00156 /*  =================== */
00157 
00158 /*  ITMAX is the maximum number of steps of iterative refinement. */
00159 
00160 /*  ===================================================================== */
00161 
00162 /*     .. Parameters .. */
00163 /*     .. */
00164 /*     .. Local Scalars .. */
00165 /*     .. */
00166 /*     .. Local Arrays .. */
00167 /*     .. */
00168 /*     .. External Subroutines .. */
00169 /*     .. */
00170 /*     .. Intrinsic Functions .. */
00171 /*     .. */
00172 /*     .. External Functions .. */
00173 /*     .. */
00174 /*     .. Statement Functions .. */
00175 /*     .. */
00176 /*     .. Statement Function definitions .. */
00177 /*     .. */
00178 /*     .. Executable Statements .. */
00179 
00180 /*     Test the input parameters. */
00181 
00182     /* Parameter adjustments */
00183     a_dim1 = *lda;
00184     a_offset = 1 + a_dim1;
00185     a -= a_offset;
00186     af_dim1 = *ldaf;
00187     af_offset = 1 + af_dim1;
00188     af -= af_offset;
00189     --ipiv;
00190     b_dim1 = *ldb;
00191     b_offset = 1 + b_dim1;
00192     b -= b_offset;
00193     x_dim1 = *ldx;
00194     x_offset = 1 + x_dim1;
00195     x -= x_offset;
00196     --ferr;
00197     --berr;
00198     --work;
00199     --rwork;
00200 
00201     /* Function Body */
00202     *info = 0;
00203     upper = lsame_(uplo, "U");
00204     if (! upper && ! lsame_(uplo, "L")) {
00205         *info = -1;
00206     } else if (*n < 0) {
00207         *info = -2;
00208     } else if (*nrhs < 0) {
00209         *info = -3;
00210     } else if (*lda < max(1,*n)) {
00211         *info = -5;
00212     } else if (*ldaf < max(1,*n)) {
00213         *info = -7;
00214     } else if (*ldb < max(1,*n)) {
00215         *info = -10;
00216     } else if (*ldx < max(1,*n)) {
00217         *info = -12;
00218     }
00219     if (*info != 0) {
00220         i__1 = -(*info);
00221         xerbla_("CHERFS", &i__1);
00222         return 0;
00223     }
00224 
00225 /*     Quick return if possible */
00226 
00227     if (*n == 0 || *nrhs == 0) {
00228         i__1 = *nrhs;
00229         for (j = 1; j <= i__1; ++j) {
00230             ferr[j] = 0.f;
00231             berr[j] = 0.f;
00232 /* L10: */
00233         }
00234         return 0;
00235     }
00236 
00237 /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
00238 
00239     nz = *n + 1;
00240     eps = slamch_("Epsilon");
00241     safmin = slamch_("Safe minimum");
00242     safe1 = nz * safmin;
00243     safe2 = safe1 / eps;
00244 
00245 /*     Do for each right hand side */
00246 
00247     i__1 = *nrhs;
00248     for (j = 1; j <= i__1; ++j) {
00249 
00250         count = 1;
00251         lstres = 3.f;
00252 L20:
00253 
00254 /*        Loop until stopping criterion is satisfied. */
00255 
00256 /*        Compute residual R = B - A * X */
00257 
00258         ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00259         q__1.r = -1.f, q__1.i = -0.f;
00260         chemv_(uplo, n, &q__1, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, &
00261                 c_b1, &work[1], &c__1);
00262 
00263 /*        Compute componentwise relative backward error from formula */
00264 
00265 /*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
00266 
00267 /*        where abs(Z) is the componentwise absolute value of the matrix */
00268 /*        or vector Z.  If the i-th component of the denominator is less */
00269 /*        than SAFE2, then SAFE1 is added to the i-th components of the */
00270 /*        numerator and denominator before dividing. */
00271 
00272         i__2 = *n;
00273         for (i__ = 1; i__ <= i__2; ++i__) {
00274             i__3 = i__ + j * b_dim1;
00275             rwork[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[
00276                     i__ + j * b_dim1]), dabs(r__2));
00277 /* L30: */
00278         }
00279 
00280 /*        Compute abs(A)*abs(X) + abs(B). */
00281 
00282         if (upper) {
00283             i__2 = *n;
00284             for (k = 1; k <= i__2; ++k) {
00285                 s = 0.f;
00286                 i__3 = k + j * x_dim1;
00287                 xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
00288                         * x_dim1]), dabs(r__2));
00289                 i__3 = k - 1;
00290                 for (i__ = 1; i__ <= i__3; ++i__) {
00291                     i__4 = i__ + k * a_dim1;
00292                     rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = 
00293                             r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk;
00294                     i__4 = i__ + k * a_dim1;
00295                     i__5 = i__ + j * x_dim1;
00296                     s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[
00297                             i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[
00298                             i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j *
00299                              x_dim1]), dabs(r__4)));
00300 /* L40: */
00301                 }
00302                 i__3 = k + k * a_dim1;
00303                 rwork[k] = rwork[k] + (r__1 = a[i__3].r, dabs(r__1)) * xk + s;
00304 /* L50: */
00305             }
00306         } else {
00307             i__2 = *n;
00308             for (k = 1; k <= i__2; ++k) {
00309                 s = 0.f;
00310                 i__3 = k + j * x_dim1;
00311                 xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
00312                         * x_dim1]), dabs(r__2));
00313                 i__3 = k + k * a_dim1;
00314                 rwork[k] += (r__1 = a[i__3].r, dabs(r__1)) * xk;
00315                 i__3 = *n;
00316                 for (i__ = k + 1; i__ <= i__3; ++i__) {
00317                     i__4 = i__ + k * a_dim1;
00318                     rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = 
00319                             r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk;
00320                     i__4 = i__ + k * a_dim1;
00321                     i__5 = i__ + j * x_dim1;
00322                     s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[
00323                             i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[
00324                             i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j *
00325                              x_dim1]), dabs(r__4)));
00326 /* L60: */
00327                 }
00328                 rwork[k] += s;
00329 /* L70: */
00330             }
00331         }
00332         s = 0.f;
00333         i__2 = *n;
00334         for (i__ = 1; i__ <= i__2; ++i__) {
00335             if (rwork[i__] > safe2) {
00336 /* Computing MAX */
00337                 i__3 = i__;
00338                 r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00339                         r_imag(&work[i__]), dabs(r__2))) / rwork[i__];
00340                 s = dmax(r__3,r__4);
00341             } else {
00342 /* Computing MAX */
00343                 i__3 = i__;
00344                 r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00345                         r_imag(&work[i__]), dabs(r__2)) + safe1) / (rwork[i__]
00346                          + safe1);
00347                 s = dmax(r__3,r__4);
00348             }
00349 /* L80: */
00350         }
00351         berr[j] = s;
00352 
00353 /*        Test stopping criterion. Continue iterating if */
00354 /*           1) The residual BERR(J) is larger than machine epsilon, and */
00355 /*           2) BERR(J) decreased by at least a factor of 2 during the */
00356 /*              last iteration, and */
00357 /*           3) At most ITMAX iterations tried. */
00358 
00359         if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
00360 
00361 /*           Update solution and try again. */
00362 
00363             chetrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], 
00364                     n, info);
00365             caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
00366             lstres = berr[j];
00367             ++count;
00368             goto L20;
00369         }
00370 
00371 /*        Bound error from formula */
00372 
00373 /*        norm(X - XTRUE) / norm(X) .le. FERR = */
00374 /*        norm( abs(inv(A))* */
00375 /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
00376 
00377 /*        where */
00378 /*          norm(Z) is the magnitude of the largest component of Z */
00379 /*          inv(A) is the inverse of A */
00380 /*          abs(Z) is the componentwise absolute value of the matrix or */
00381 /*             vector Z */
00382 /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
00383 /*          EPS is machine epsilon */
00384 
00385 /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
00386 /*        is incremented by SAFE1 if the i-th component of */
00387 /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
00388 
00389 /*        Use CLACN2 to estimate the infinity-norm of the matrix */
00390 /*           inv(A) * diag(W), */
00391 /*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
00392 
00393         i__2 = *n;
00394         for (i__ = 1; i__ <= i__2; ++i__) {
00395             if (rwork[i__] > safe2) {
00396                 i__3 = i__;
00397                 rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00398                         r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
00399                         i__];
00400             } else {
00401                 i__3 = i__;
00402                 rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
00403                         r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
00404                         i__] + safe1;
00405             }
00406 /* L90: */
00407         }
00408 
00409         kase = 0;
00410 L100:
00411         clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
00412         if (kase != 0) {
00413             if (kase == 1) {
00414 
00415 /*              Multiply by diag(W)*inv(A'). */
00416 
00417                 chetrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
00418                         1], n, info);
00419                 i__2 = *n;
00420                 for (i__ = 1; i__ <= i__2; ++i__) {
00421                     i__3 = i__;
00422                     i__4 = i__;
00423                     i__5 = i__;
00424                     q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
00425                             * work[i__5].i;
00426                     work[i__3].r = q__1.r, work[i__3].i = q__1.i;
00427 /* L110: */
00428                 }
00429             } else if (kase == 2) {
00430 
00431 /*              Multiply by inv(A)*diag(W). */
00432 
00433                 i__2 = *n;
00434                 for (i__ = 1; i__ <= i__2; ++i__) {
00435                     i__3 = i__;
00436                     i__4 = i__;
00437                     i__5 = i__;
00438                     q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
00439                             * work[i__5].i;
00440                     work[i__3].r = q__1.r, work[i__3].i = q__1.i;
00441 /* L120: */
00442                 }
00443                 chetrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
00444                         1], n, info);
00445             }
00446             goto L100;
00447         }
00448 
00449 /*        Normalize error. */
00450 
00451         lstres = 0.f;
00452         i__2 = *n;
00453         for (i__ = 1; i__ <= i__2; ++i__) {
00454 /* Computing MAX */
00455             i__3 = i__ + j * x_dim1;
00456             r__3 = lstres, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
00457                     r_imag(&x[i__ + j * x_dim1]), dabs(r__2));
00458             lstres = dmax(r__3,r__4);
00459 /* L130: */
00460         }
00461         if (lstres != 0.f) {
00462             ferr[j] /= lstres;
00463         }
00464 
00465 /* L140: */
00466     }
00467 
00468     return 0;
00469 
00470 /*     End of CHERFS */
00471 
00472 } /* cherfs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:28