00001 /* chbgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int chbgv_(char *jobz, char *uplo, integer *n, integer *ka, 00017 integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, 00018 real *w, complex *z__, integer *ldz, complex *work, real *rwork, 00019 integer *info) 00020 { 00021 /* System generated locals */ 00022 integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; 00023 00024 /* Local variables */ 00025 integer inde; 00026 char vect[1]; 00027 extern logical lsame_(char *, char *); 00028 integer iinfo; 00029 logical upper, wantz; 00030 extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, 00031 complex *, integer *, real *, real *, complex *, integer *, 00032 complex *, integer *), chbgst_(char *, char *, 00033 integer *, integer *, integer *, complex *, integer *, complex *, 00034 integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char 00035 *, integer *, integer *, complex *, integer *, integer *); 00036 integer indwrk; 00037 extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 00038 complex *, integer *, real *, integer *), ssterf_(integer 00039 *, real *, real *, integer *); 00040 00041 00042 /* -- LAPACK driver routine (version 3.2) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* CHBGV computes all the eigenvalues, and optionally, the eigenvectors */ 00055 /* of a complex generalized Hermitian-definite banded eigenproblem, of */ 00056 /* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */ 00057 /* and banded, and B is also positive definite. */ 00058 00059 /* Arguments */ 00060 /* ========= */ 00061 00062 /* JOBZ (input) CHARACTER*1 */ 00063 /* = 'N': Compute eigenvalues only; */ 00064 /* = 'V': Compute eigenvalues and eigenvectors. */ 00065 00066 /* UPLO (input) CHARACTER*1 */ 00067 /* = 'U': Upper triangles of A and B are stored; */ 00068 /* = 'L': Lower triangles of A and B are stored. */ 00069 00070 /* N (input) INTEGER */ 00071 /* The order of the matrices A and B. N >= 0. */ 00072 00073 /* KA (input) INTEGER */ 00074 /* The number of superdiagonals of the matrix A if UPLO = 'U', */ 00075 /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ 00076 00077 /* KB (input) INTEGER */ 00078 /* The number of superdiagonals of the matrix B if UPLO = 'U', */ 00079 /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ 00080 00081 /* AB (input/output) COMPLEX array, dimension (LDAB, N) */ 00082 /* On entry, the upper or lower triangle of the Hermitian band */ 00083 /* matrix A, stored in the first ka+1 rows of the array. The */ 00084 /* j-th column of A is stored in the j-th column of the array AB */ 00085 /* as follows: */ 00086 /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ 00087 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ 00088 00089 /* On exit, the contents of AB are destroyed. */ 00090 00091 /* LDAB (input) INTEGER */ 00092 /* The leading dimension of the array AB. LDAB >= KA+1. */ 00093 00094 /* BB (input/output) COMPLEX array, dimension (LDBB, N) */ 00095 /* On entry, the upper or lower triangle of the Hermitian band */ 00096 /* matrix B, stored in the first kb+1 rows of the array. The */ 00097 /* j-th column of B is stored in the j-th column of the array BB */ 00098 /* as follows: */ 00099 /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ 00100 /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ 00101 00102 /* On exit, the factor S from the split Cholesky factorization */ 00103 /* B = S**H*S, as returned by CPBSTF. */ 00104 00105 /* LDBB (input) INTEGER */ 00106 /* The leading dimension of the array BB. LDBB >= KB+1. */ 00107 00108 /* W (output) REAL array, dimension (N) */ 00109 /* If INFO = 0, the eigenvalues in ascending order. */ 00110 00111 /* Z (output) COMPLEX array, dimension (LDZ, N) */ 00112 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00113 /* eigenvectors, with the i-th column of Z holding the */ 00114 /* eigenvector associated with W(i). The eigenvectors are */ 00115 /* normalized so that Z**H*B*Z = I. */ 00116 /* If JOBZ = 'N', then Z is not referenced. */ 00117 00118 /* LDZ (input) INTEGER */ 00119 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00120 /* JOBZ = 'V', LDZ >= N. */ 00121 00122 /* WORK (workspace) COMPLEX array, dimension (N) */ 00123 00124 /* RWORK (workspace) REAL array, dimension (3*N) */ 00125 00126 /* INFO (output) INTEGER */ 00127 /* = 0: successful exit */ 00128 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00129 /* > 0: if INFO = i, and i is: */ 00130 /* <= N: the algorithm failed to converge: */ 00131 /* i off-diagonal elements of an intermediate */ 00132 /* tridiagonal form did not converge to zero; */ 00133 /* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */ 00134 /* returned INFO = i: B is not positive definite. */ 00135 /* The factorization of B could not be completed and */ 00136 /* no eigenvalues or eigenvectors were computed. */ 00137 00138 /* ===================================================================== */ 00139 00140 /* .. Local Scalars .. */ 00141 /* .. */ 00142 /* .. External Functions .. */ 00143 /* .. */ 00144 /* .. External Subroutines .. */ 00145 /* .. */ 00146 /* .. Executable Statements .. */ 00147 00148 /* Test the input parameters. */ 00149 00150 /* Parameter adjustments */ 00151 ab_dim1 = *ldab; 00152 ab_offset = 1 + ab_dim1; 00153 ab -= ab_offset; 00154 bb_dim1 = *ldbb; 00155 bb_offset = 1 + bb_dim1; 00156 bb -= bb_offset; 00157 --w; 00158 z_dim1 = *ldz; 00159 z_offset = 1 + z_dim1; 00160 z__ -= z_offset; 00161 --work; 00162 --rwork; 00163 00164 /* Function Body */ 00165 wantz = lsame_(jobz, "V"); 00166 upper = lsame_(uplo, "U"); 00167 00168 *info = 0; 00169 if (! (wantz || lsame_(jobz, "N"))) { 00170 *info = -1; 00171 } else if (! (upper || lsame_(uplo, "L"))) { 00172 *info = -2; 00173 } else if (*n < 0) { 00174 *info = -3; 00175 } else if (*ka < 0) { 00176 *info = -4; 00177 } else if (*kb < 0 || *kb > *ka) { 00178 *info = -5; 00179 } else if (*ldab < *ka + 1) { 00180 *info = -7; 00181 } else if (*ldbb < *kb + 1) { 00182 *info = -9; 00183 } else if (*ldz < 1 || wantz && *ldz < *n) { 00184 *info = -12; 00185 } 00186 if (*info != 0) { 00187 i__1 = -(*info); 00188 xerbla_("CHBGV ", &i__1); 00189 return 0; 00190 } 00191 00192 /* Quick return if possible */ 00193 00194 if (*n == 0) { 00195 return 0; 00196 } 00197 00198 /* Form a split Cholesky factorization of B. */ 00199 00200 cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); 00201 if (*info != 0) { 00202 *info = *n + *info; 00203 return 0; 00204 } 00205 00206 /* Transform problem to standard eigenvalue problem. */ 00207 00208 inde = 1; 00209 indwrk = inde + *n; 00210 chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 00211 &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); 00212 00213 /* Reduce to tridiagonal form. */ 00214 00215 if (wantz) { 00216 *(unsigned char *)vect = 'U'; 00217 } else { 00218 *(unsigned char *)vect = 'N'; 00219 } 00220 chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & 00221 z__[z_offset], ldz, &work[1], &iinfo); 00222 00223 /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */ 00224 00225 if (! wantz) { 00226 ssterf_(n, &w[1], &rwork[inde], info); 00227 } else { 00228 csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ 00229 indwrk], info); 00230 } 00231 return 0; 00232 00233 /* End of CHBGV */ 00234 00235 } /* chbgv_ */