00001 /* cgerq2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int cgerq2_(integer *m, integer *n, complex *a, integer *lda, 00017 complex *tau, complex *work, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2; 00021 00022 /* Local variables */ 00023 integer i__, k; 00024 complex alpha; 00025 extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * 00026 , integer *, complex *, complex *, integer *, complex *), 00027 clacgv_(integer *, complex *, integer *), clarfp_(integer *, 00028 complex *, complex *, integer *, complex *), xerbla_(char *, 00029 integer *); 00030 00031 00032 /* -- LAPACK routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* CGERQ2 computes an RQ factorization of a complex m by n matrix A: */ 00045 /* A = R * Q. */ 00046 00047 /* Arguments */ 00048 /* ========= */ 00049 00050 /* M (input) INTEGER */ 00051 /* The number of rows of the matrix A. M >= 0. */ 00052 00053 /* N (input) INTEGER */ 00054 /* The number of columns of the matrix A. N >= 0. */ 00055 00056 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00057 /* On entry, the m by n matrix A. */ 00058 /* On exit, if m <= n, the upper triangle of the subarray */ 00059 /* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */ 00060 /* if m >= n, the elements on and above the (m-n)-th subdiagonal */ 00061 /* contain the m by n upper trapezoidal matrix R; the remaining */ 00062 /* elements, with the array TAU, represent the unitary matrix */ 00063 /* Q as a product of elementary reflectors (see Further */ 00064 /* Details). */ 00065 00066 /* LDA (input) INTEGER */ 00067 /* The leading dimension of the array A. LDA >= max(1,M). */ 00068 00069 /* TAU (output) COMPLEX array, dimension (min(M,N)) */ 00070 /* The scalar factors of the elementary reflectors (see Further */ 00071 /* Details). */ 00072 00073 /* WORK (workspace) COMPLEX array, dimension (M) */ 00074 00075 /* INFO (output) INTEGER */ 00076 /* = 0: successful exit */ 00077 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00078 00079 /* Further Details */ 00080 /* =============== */ 00081 00082 /* The matrix Q is represented as a product of elementary reflectors */ 00083 00084 /* Q = H(1)' H(2)' . . . H(k)', where k = min(m,n). */ 00085 00086 /* Each H(i) has the form */ 00087 00088 /* H(i) = I - tau * v * v' */ 00089 00090 /* where tau is a complex scalar, and v is a complex vector with */ 00091 /* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on */ 00092 /* exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). */ 00093 00094 /* ===================================================================== */ 00095 00096 /* .. Parameters .. */ 00097 /* .. */ 00098 /* .. Local Scalars .. */ 00099 /* .. */ 00100 /* .. External Subroutines .. */ 00101 /* .. */ 00102 /* .. Intrinsic Functions .. */ 00103 /* .. */ 00104 /* .. Executable Statements .. */ 00105 00106 /* Test the input arguments */ 00107 00108 /* Parameter adjustments */ 00109 a_dim1 = *lda; 00110 a_offset = 1 + a_dim1; 00111 a -= a_offset; 00112 --tau; 00113 --work; 00114 00115 /* Function Body */ 00116 *info = 0; 00117 if (*m < 0) { 00118 *info = -1; 00119 } else if (*n < 0) { 00120 *info = -2; 00121 } else if (*lda < max(1,*m)) { 00122 *info = -4; 00123 } 00124 if (*info != 0) { 00125 i__1 = -(*info); 00126 xerbla_("CGERQ2", &i__1); 00127 return 0; 00128 } 00129 00130 k = min(*m,*n); 00131 00132 for (i__ = k; i__ >= 1; --i__) { 00133 00134 /* Generate elementary reflector H(i) to annihilate */ 00135 /* A(m-k+i,1:n-k+i-1) */ 00136 00137 i__1 = *n - k + i__; 00138 clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda); 00139 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00140 alpha.r = a[i__1].r, alpha.i = a[i__1].i; 00141 i__1 = *n - k + i__; 00142 clarfp_(&i__1, &alpha, &a[*m - k + i__ + a_dim1], lda, &tau[i__]); 00143 00144 /* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */ 00145 00146 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00147 a[i__1].r = 1.f, a[i__1].i = 0.f; 00148 i__1 = *m - k + i__ - 1; 00149 i__2 = *n - k + i__; 00150 clarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[ 00151 i__], &a[a_offset], lda, &work[1]); 00152 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00153 a[i__1].r = alpha.r, a[i__1].i = alpha.i; 00154 i__1 = *n - k + i__ - 1; 00155 clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda); 00156 /* L10: */ 00157 } 00158 return 0; 00159 00160 /* End of CGERQ2 */ 00161 00162 } /* cgerq2_ */