cgelq2.c
Go to the documentation of this file.
00001 /* cgelq2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int cgelq2_(integer *m, integer *n, complex *a, integer *lda, 
00017          complex *tau, complex *work, integer *info)
00018 {
00019     /* System generated locals */
00020     integer a_dim1, a_offset, i__1, i__2, i__3;
00021 
00022     /* Local variables */
00023     integer i__, k;
00024     complex alpha;
00025     extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
00026 , integer *, complex *, complex *, integer *, complex *), 
00027             clacgv_(integer *, complex *, integer *), clarfp_(integer *, 
00028             complex *, complex *, integer *, complex *), xerbla_(char *, 
00029             integer *);
00030 
00031 
00032 /*  -- LAPACK routine (version 3.2) -- */
00033 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00034 /*     November 2006 */
00035 
00036 /*     .. Scalar Arguments .. */
00037 /*     .. */
00038 /*     .. Array Arguments .. */
00039 /*     .. */
00040 
00041 /*  Purpose */
00042 /*  ======= */
00043 
00044 /*  CGELQ2 computes an LQ factorization of a complex m by n matrix A: */
00045 /*  A = L * Q. */
00046 
00047 /*  Arguments */
00048 /*  ========= */
00049 
00050 /*  M       (input) INTEGER */
00051 /*          The number of rows of the matrix A.  M >= 0. */
00052 
00053 /*  N       (input) INTEGER */
00054 /*          The number of columns of the matrix A.  N >= 0. */
00055 
00056 /*  A       (input/output) COMPLEX array, dimension (LDA,N) */
00057 /*          On entry, the m by n matrix A. */
00058 /*          On exit, the elements on and below the diagonal of the array */
00059 /*          contain the m by min(m,n) lower trapezoidal matrix L (L is */
00060 /*          lower triangular if m <= n); the elements above the diagonal, */
00061 /*          with the array TAU, represent the unitary matrix Q as a */
00062 /*          product of elementary reflectors (see Further Details). */
00063 
00064 /*  LDA     (input) INTEGER */
00065 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00066 
00067 /*  TAU     (output) COMPLEX array, dimension (min(M,N)) */
00068 /*          The scalar factors of the elementary reflectors (see Further */
00069 /*          Details). */
00070 
00071 /*  WORK    (workspace) COMPLEX array, dimension (M) */
00072 
00073 /*  INFO    (output) INTEGER */
00074 /*          = 0: successful exit */
00075 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00076 
00077 /*  Further Details */
00078 /*  =============== */
00079 
00080 /*  The matrix Q is represented as a product of elementary reflectors */
00081 
00082 /*     Q = H(k)' . . . H(2)' H(1)', where k = min(m,n). */
00083 
00084 /*  Each H(i) has the form */
00085 
00086 /*     H(i) = I - tau * v * v' */
00087 
00088 /*  where tau is a complex scalar, and v is a complex vector with */
00089 /*  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in */
00090 /*  A(i,i+1:n), and tau in TAU(i). */
00091 
00092 /*  ===================================================================== */
00093 
00094 /*     .. Parameters .. */
00095 /*     .. */
00096 /*     .. Local Scalars .. */
00097 /*     .. */
00098 /*     .. External Subroutines .. */
00099 /*     .. */
00100 /*     .. Intrinsic Functions .. */
00101 /*     .. */
00102 /*     .. Executable Statements .. */
00103 
00104 /*     Test the input arguments */
00105 
00106     /* Parameter adjustments */
00107     a_dim1 = *lda;
00108     a_offset = 1 + a_dim1;
00109     a -= a_offset;
00110     --tau;
00111     --work;
00112 
00113     /* Function Body */
00114     *info = 0;
00115     if (*m < 0) {
00116         *info = -1;
00117     } else if (*n < 0) {
00118         *info = -2;
00119     } else if (*lda < max(1,*m)) {
00120         *info = -4;
00121     }
00122     if (*info != 0) {
00123         i__1 = -(*info);
00124         xerbla_("CGELQ2", &i__1);
00125         return 0;
00126     }
00127 
00128     k = min(*m,*n);
00129 
00130     i__1 = k;
00131     for (i__ = 1; i__ <= i__1; ++i__) {
00132 
00133 /*        Generate elementary reflector H(i) to annihilate A(i,i+1:n) */
00134 
00135         i__2 = *n - i__ + 1;
00136         clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00137         i__2 = i__ + i__ * a_dim1;
00138         alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00139         i__2 = *n - i__ + 1;
00140 /* Computing MIN */
00141         i__3 = i__ + 1;
00142         clarfp_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, &tau[i__]
00143 );
00144         if (i__ < *m) {
00145 
00146 /*           Apply H(i) to A(i+1:m,i:n) from the right */
00147 
00148             i__2 = i__ + i__ * a_dim1;
00149             a[i__2].r = 1.f, a[i__2].i = 0.f;
00150             i__2 = *m - i__;
00151             i__3 = *n - i__ + 1;
00152             clarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
00153                     i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
00154         }
00155         i__2 = i__ + i__ * a_dim1;
00156         a[i__2].r = alpha.r, a[i__2].i = alpha.i;
00157         i__2 = *n - i__ + 1;
00158         clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00159 /* L10: */
00160     }
00161     return 0;
00162 
00163 /*     End of CGELQ2 */
00164 
00165 } /* cgelq2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:26