cdrvvx.c
Go to the documentation of this file.
00001 /* cdrvvx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static complex c_b1 = {0.f,0.f};
00019 static complex c_b2 = {1.f,0.f};
00020 static integer c__0 = 0;
00021 static integer c__4 = 4;
00022 static integer c__6 = 6;
00023 static real c_b39 = 1.f;
00024 static integer c__1 = 1;
00025 static real c_b49 = 0.f;
00026 static integer c__2 = 2;
00027 static logical c_false = FALSE_;
00028 static integer c__3 = 3;
00029 static logical c_true = TRUE_;
00030 static integer c__22 = 22;
00031 
00032 /* Subroutine */ int cdrvvx_(integer *nsizes, integer *nn, integer *ntypes, 
00033         logical *dotype, integer *iseed, real *thresh, integer *niunit, 
00034         integer *nounit, complex *a, integer *lda, complex *h__, complex *w, 
00035         complex *w1, complex *vl, integer *ldvl, complex *vr, integer *ldvr, 
00036         complex *lre, integer *ldlre, real *rcondv, real *rcndv1, real *
00037         rcdvin, real *rconde, real *rcnde1, real *rcdein, real *scale, real *
00038         scale1, real *result, complex *work, integer *nwork, real *rwork, 
00039         integer *info)
00040 {
00041     /* Initialized data */
00042 
00043     static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
00044     static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
00045     static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
00046     static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
00047     static char bal[1*4] = "N" "P" "S" "B";
00048 
00049     /* Format strings */
00050     static char fmt_9992[] = "(\002 CDRVVX: \002,a,\002 returned INFO=\002,i"
00051             "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
00052             "(\002,3(i5,\002,\002),i5,\002)\002)";
00053     static char fmt_9999[] = "(/1x,a3,\002 -- Complex Eigenvalue-Eigenvect"
00054             "or \002,\002Decomposition Expert Driver\002,/\002 Matrix types ("
00055             "see CDRVVX for details): \002)";
00056     static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
00057             "rix.             \002,\002           \002,\002  5=Diagonal: geom"
00058             "etr. spaced entries.\002,/\002  2=Identity matrix.              "
00059             "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
00060             "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
00061             " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
00062             "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
00063             "ll, evenly spaced.\002)";
00064     static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
00065             "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
00066             "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
00067             "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
00068             "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
00069             "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
00070             " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
00071             "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
00072             "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
00073             ",\002 complx \002)";
00074     static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
00075             " \002,\002 21=Matrix \002,\002with small random entries.\002,"
00076             "/\002 20=Matrix with large ran\002,\002dom entries.   \002,\002 "
00077             "22=Matrix read from input file\002,/)";
00078     static char fmt_9995[] = "(\002 Tests performed with test threshold ="
00079             "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
00080             "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
00081             "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
00082             "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
00083             "/ulp otherwise\002,/\002 6 = 0 if VR same no matter what else co"
00084             "mputed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no "
00085             "matter what else computed,\002,\002  1/ulp otherwise\002,/\002 8"
00086             " = 0 if RCONDV same no matter what else computed,\002,\002  1/ul"
00087             "p otherwise\002,/\002 9 = 0 if SCALE, ILO, IHI, ABNRM same no ma"
00088             "tter what else\002,\002 computed,  1/ulp otherwise\002,/\002 10 "
00089             "= | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002,/\002 11 "
00090             "= | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002)";
00091     static char fmt_9994[] = "(\002 BALANC='\002,a1,\002',N=\002,i4,\002,I"
00092             "WK=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,"
00093             "\002, test(\002,i2,\002)=\002,g10.3)";
00094     static char fmt_9993[] = "(\002 N=\002,i5,\002, input example =\002,i3"
00095             ",\002,  test(\002,i2,\002)=\002,g10.3)";
00096 
00097     /* System generated locals */
00098     integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
00099              vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4;
00100     complex q__1;
00101 
00102     /* Builtin functions */
00103     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00104     double sqrt(doublereal);
00105     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
00106              s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
00107             e_rsle(void);
00108 
00109     /* Local variables */
00110     integer i__, j, n;
00111     real wi, wr;
00112     integer iwk;
00113     real ulp;
00114     integer ibal;
00115     real cond;
00116     integer jcol;
00117     char path[3];
00118     integer nmax;
00119     real unfl, ovfl;
00120     integer isrt;
00121     logical badnn;
00122     extern /* Subroutine */ int cget23_(logical *, integer *, char *, integer 
00123             *, real *, integer *, integer *, integer *, complex *, integer *, 
00124             complex *, complex *, complex *, complex *, integer *, complex *, 
00125             integer *, complex *, integer *, real *, real *, real *, real *, 
00126             real *, real *, real *, real *, real *, complex *, integer *, 
00127             real *, integer *);
00128     integer nfail, imode, iinfo;
00129     real conds, anorm;
00130     integer jsize, nerrs, itype, jtype, ntest;
00131     real rtulp;
00132     char balanc[1];
00133     extern /* Subroutine */ int slabad_(real *, real *), clatme_(integer *, 
00134             char *, integer *, complex *, integer *, real *, complex *, char *
00135 , char *, char *, char *, real *, integer *, real *, integer *, 
00136             integer *, real *, complex *, integer *, complex *, integer *);
00137     extern doublereal slamch_(char *);
00138     extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
00139             *, complex *, complex *, integer *);
00140     integer idumma[1];
00141     extern /* Subroutine */ int xerbla_(char *, integer *);
00142     integer ioldsd[4];
00143     extern /* Subroutine */ int clatmr_(integer *, integer *, char *, integer 
00144             *, char *, complex *, integer *, real *, complex *, char *, char *
00145 , complex *, integer *, real *, complex *, integer *, real *, 
00146             char *, integer *, integer *, integer *, real *, real *, char *, 
00147             complex *, integer *, integer *, integer *), clatms_(integer *, integer *, 
00148             char *, integer *, char *, real *, integer *, real *, real *, 
00149             integer *, integer *, char *, complex *, integer *, complex *, 
00150             integer *);
00151     integer ntestf;
00152     extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
00153             *);
00154     integer nnwork;
00155     real rtulpi;
00156     integer mtypes, ntestt;
00157     real ulpinv;
00158 
00159     /* Fortran I/O blocks */
00160     static cilist io___32 = { 0, 0, 0, fmt_9992, 0 };
00161     static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };
00162     static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
00163     static cilist io___41 = { 0, 0, 0, fmt_9997, 0 };
00164     static cilist io___42 = { 0, 0, 0, fmt_9996, 0 };
00165     static cilist io___43 = { 0, 0, 0, fmt_9995, 0 };
00166     static cilist io___44 = { 0, 0, 0, fmt_9994, 0 };
00167     static cilist io___45 = { 0, 0, 1, 0, 0 };
00168     static cilist io___48 = { 0, 0, 0, 0, 0 };
00169     static cilist io___49 = { 0, 0, 0, 0, 0 };
00170     static cilist io___52 = { 0, 0, 0, fmt_9999, 0 };
00171     static cilist io___53 = { 0, 0, 0, fmt_9998, 0 };
00172     static cilist io___54 = { 0, 0, 0, fmt_9997, 0 };
00173     static cilist io___55 = { 0, 0, 0, fmt_9996, 0 };
00174     static cilist io___56 = { 0, 0, 0, fmt_9995, 0 };
00175     static cilist io___57 = { 0, 0, 0, fmt_9993, 0 };
00176 
00177 
00178 
00179 /*  -- LAPACK test routine (version 3.1) -- */
00180 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00181 /*     November 2006 */
00182 
00183 /*     .. Scalar Arguments .. */
00184 /*     .. */
00185 /*     .. Array Arguments .. */
00186 /*     .. */
00187 
00188 /*  Purpose */
00189 /*  ======= */
00190 
00191 /*     CDRVVX  checks the nonsymmetric eigenvalue problem expert driver */
00192 /*     CGEEVX. */
00193 
00194 /*     CDRVVX uses both test matrices generated randomly depending on */
00195 /*     data supplied in the calling sequence, as well as on data */
00196 /*     read from an input file and including precomputed condition */
00197 /*     numbers to which it compares the ones it computes. */
00198 
00199 /*     When CDRVVX is called, a number of matrix "sizes" ("n's") and a */
00200 /*     number of matrix "types" are specified in the calling sequence. */
00201 /*     For each size ("n") and each type of matrix, one matrix will be */
00202 /*     generated and used to test the nonsymmetric eigenroutines.  For */
00203 /*     each matrix, 9 tests will be performed: */
00204 
00205 /*     (1)     | A * VR - VR * W | / ( n |A| ulp ) */
00206 
00207 /*       Here VR is the matrix of unit right eigenvectors. */
00208 /*       W is a diagonal matrix with diagonal entries W(j). */
00209 
00210 /*     (2)     | A**H  * VL - VL * W**H | / ( n |A| ulp ) */
00211 
00212 /*       Here VL is the matrix of unit left eigenvectors, A**H is the */
00213 /*       conjugate transpose of A, and W is as above. */
00214 
00215 /*     (3)     | |VR(i)| - 1 | / ulp and largest component real */
00216 
00217 /*       VR(i) denotes the i-th column of VR. */
00218 
00219 /*     (4)     | |VL(i)| - 1 | / ulp and largest component real */
00220 
00221 /*       VL(i) denotes the i-th column of VL. */
00222 
00223 /*     (5)     W(full) = W(partial) */
00224 
00225 /*       W(full) denotes the eigenvalues computed when VR, VL, RCONDV */
00226 /*       and RCONDE are also computed, and W(partial) denotes the */
00227 /*       eigenvalues computed when only some of VR, VL, RCONDV, and */
00228 /*       RCONDE are computed. */
00229 
00230 /*     (6)     VR(full) = VR(partial) */
00231 
00232 /*       VR(full) denotes the right eigenvectors computed when VL, RCONDV */
00233 /*       and RCONDE are computed, and VR(partial) denotes the result */
00234 /*       when only some of VL and RCONDV are computed. */
00235 
00236 /*     (7)     VL(full) = VL(partial) */
00237 
00238 /*       VL(full) denotes the left eigenvectors computed when VR, RCONDV */
00239 /*       and RCONDE are computed, and VL(partial) denotes the result */
00240 /*       when only some of VR and RCONDV are computed. */
00241 
00242 /*     (8)     0 if SCALE, ILO, IHI, ABNRM (full) = */
00243 /*                  SCALE, ILO, IHI, ABNRM (partial) */
00244 /*             1/ulp otherwise */
00245 
00246 /*       SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. */
00247 /*       (full) is when VR, VL, RCONDE and RCONDV are also computed, and */
00248 /*       (partial) is when some are not computed. */
00249 
00250 /*     (9)     RCONDV(full) = RCONDV(partial) */
00251 
00252 /*       RCONDV(full) denotes the reciprocal condition numbers of the */
00253 /*       right eigenvectors computed when VR, VL and RCONDE are also */
00254 /*       computed. RCONDV(partial) denotes the reciprocal condition */
00255 /*       numbers when only some of VR, VL and RCONDE are computed. */
00256 
00257 /*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
00258 /*     each element NN(j) specifies one size. */
00259 /*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
00260 /*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
00261 /*     Currently, the list of possible types is: */
00262 
00263 /*     (1)  The zero matrix. */
00264 /*     (2)  The identity matrix. */
00265 /*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */
00266 
00267 /*     (4)  A diagonal matrix with evenly spaced entries */
00268 /*          1, ..., ULP  and random complex angles. */
00269 /*          (ULP = (first number larger than 1) - 1 ) */
00270 /*     (5)  A diagonal matrix with geometrically spaced entries */
00271 /*          1, ..., ULP  and random complex angles. */
00272 /*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
00273 /*          and random complex angles. */
00274 
00275 /*     (7)  Same as (4), but multiplied by a constant near */
00276 /*          the overflow threshold */
00277 /*     (8)  Same as (4), but multiplied by a constant near */
00278 /*          the underflow threshold */
00279 
00280 /*     (9)  A matrix of the form  U' T U, where U is unitary and */
00281 /*          T has evenly spaced entries 1, ..., ULP with random complex */
00282 /*          angles on the diagonal and random O(1) entries in the upper */
00283 /*          triangle. */
00284 
00285 /*     (10) A matrix of the form  U' T U, where U is unitary and */
00286 /*          T has geometrically spaced entries 1, ..., ULP with random */
00287 /*          complex angles on the diagonal and random O(1) entries in */
00288 /*          the upper triangle. */
00289 
00290 /*     (11) A matrix of the form  U' T U, where U is unitary and */
00291 /*          T has "clustered" entries 1, ULP,..., ULP with random */
00292 /*          complex angles on the diagonal and random O(1) entries in */
00293 /*          the upper triangle. */
00294 
00295 /*     (12) A matrix of the form  U' T U, where U is unitary and */
00296 /*          T has complex eigenvalues randomly chosen from */
00297 /*          ULP < |z| < 1   and random O(1) entries in the upper */
00298 /*          triangle. */
00299 
00300 /*     (13) A matrix of the form  X' T X, where X has condition */
00301 /*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
00302 /*          with random complex angles on the diagonal and random O(1) */
00303 /*          entries in the upper triangle. */
00304 
00305 /*     (14) A matrix of the form  X' T X, where X has condition */
00306 /*          SQRT( ULP ) and T has geometrically spaced entries */
00307 /*          1, ..., ULP with random complex angles on the diagonal */
00308 /*          and random O(1) entries in the upper triangle. */
00309 
00310 /*     (15) A matrix of the form  X' T X, where X has condition */
00311 /*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
00312 /*          with random complex angles on the diagonal and random O(1) */
00313 /*          entries in the upper triangle. */
00314 
00315 /*     (16) A matrix of the form  X' T X, where X has condition */
00316 /*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
00317 /*          from ULP < |z| < 1 and random O(1) entries in the upper */
00318 /*          triangle. */
00319 
00320 /*     (17) Same as (16), but multiplied by a constant */
00321 /*          near the overflow threshold */
00322 /*     (18) Same as (16), but multiplied by a constant */
00323 /*          near the underflow threshold */
00324 
00325 /*     (19) Nonsymmetric matrix with random entries chosen from |z| < 1 */
00326 /*          If N is at least 4, all entries in first two rows and last */
00327 /*          row, and first column and last two columns are zero. */
00328 /*     (20) Same as (19), but multiplied by a constant */
00329 /*          near the overflow threshold */
00330 /*     (21) Same as (19), but multiplied by a constant */
00331 /*          near the underflow threshold */
00332 
00333 /*     In addition, an input file will be read from logical unit number */
00334 /*     NIUNIT. The file contains matrices along with precomputed */
00335 /*     eigenvalues and reciprocal condition numbers for the eigenvalues */
00336 /*     and right eigenvectors. For these matrices, in addition to tests */
00337 /*     (1) to (9) we will compute the following two tests: */
00338 
00339 /*    (10)  |RCONDV - RCDVIN| / cond(RCONDV) */
00340 
00341 /*       RCONDV is the reciprocal right eigenvector condition number */
00342 /*       computed by CGEEVX and RCDVIN (the precomputed true value) */
00343 /*       is supplied as input. cond(RCONDV) is the condition number of */
00344 /*       RCONDV, and takes errors in computing RCONDV into account, so */
00345 /*       that the resulting quantity should be O(ULP). cond(RCONDV) is */
00346 /*       essentially given by norm(A)/RCONDE. */
00347 
00348 /*    (11)  |RCONDE - RCDEIN| / cond(RCONDE) */
00349 
00350 /*       RCONDE is the reciprocal eigenvalue condition number */
00351 /*       computed by CGEEVX and RCDEIN (the precomputed true value) */
00352 /*       is supplied as input.  cond(RCONDE) is the condition number */
00353 /*       of RCONDE, and takes errors in computing RCONDE into account, */
00354 /*       so that the resulting quantity should be O(ULP). cond(RCONDE) */
00355 /*       is essentially given by norm(A)/RCONDV. */
00356 
00357 /*  Arguments */
00358 /*  ========== */
00359 
00360 /*  NSIZES  (input) INTEGER */
00361 /*          The number of sizes of matrices to use.  NSIZES must be at */
00362 /*          least zero. If it is zero, no randomly generated matrices */
00363 /*          are tested, but any test matrices read from NIUNIT will be */
00364 /*          tested. */
00365 
00366 /*  NN      (input) INTEGER array, dimension (NSIZES) */
00367 /*          An array containing the sizes to be used for the matrices. */
00368 /*          Zero values will be skipped.  The values must be at least */
00369 /*          zero. */
00370 
00371 /*  NTYPES  (input) INTEGER */
00372 /*          The number of elements in DOTYPE. NTYPES must be at least */
00373 /*          zero. If it is zero, no randomly generated test matrices */
00374 /*          are tested, but and test matrices read from NIUNIT will be */
00375 /*          tested. If it is MAXTYP+1 and NSIZES is 1, then an */
00376 /*          additional type, MAXTYP+1 is defined, which is to use */
00377 /*          whatever matrix is in A.  This is only useful if */
00378 /*          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */
00379 
00380 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00381 /*          If DOTYPE(j) is .TRUE., then for each size in NN a */
00382 /*          matrix of that size and of type j will be generated. */
00383 /*          If NTYPES is smaller than the maximum number of types */
00384 /*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
00385 /*          MAXTYP will not be generated.  If NTYPES is larger */
00386 /*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
00387 /*          will be ignored. */
00388 
00389 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00390 /*          On entry ISEED specifies the seed of the random number */
00391 /*          generator. The array elements should be between 0 and 4095; */
00392 /*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
00393 /*          be odd.  The random number generator uses a linear */
00394 /*          congruential sequence limited to small integers, and so */
00395 /*          should produce machine independent random numbers. The */
00396 /*          values of ISEED are changed on exit, and can be used in the */
00397 /*          next call to CDRVVX to continue the same random number */
00398 /*          sequence. */
00399 
00400 /*  THRESH  (input) REAL */
00401 /*          A test will count as "failed" if the "error", computed as */
00402 /*          described above, exceeds THRESH.  Note that the error */
00403 /*          is scaled to be O(1), so THRESH should be a reasonably */
00404 /*          small multiple of 1, e.g., 10 or 100.  In particular, */
00405 /*          it should not depend on the precision (single vs. double) */
00406 /*          or the size of the matrix.  It must be at least zero. */
00407 
00408 /*  NIUNIT  (input) INTEGER */
00409 /*          The FORTRAN unit number for reading in the data file of */
00410 /*          problems to solve. */
00411 
00412 /*  NOUNIT  (input) INTEGER */
00413 /*          The FORTRAN unit number for printing out error messages */
00414 /*          (e.g., if a routine returns INFO not equal to 0.) */
00415 
00416 /*  A       (workspace) COMPLEX array, dimension (LDA, max(NN,12)) */
00417 /*          Used to hold the matrix whose eigenvalues are to be */
00418 /*          computed.  On exit, A contains the last matrix actually used. */
00419 
00420 /*  LDA     (input) INTEGER */
00421 /*          The leading dimension of A, and H. LDA must be at */
00422 /*          least 1 and at least max( NN, 12 ). (12 is the */
00423 /*          dimension of the largest matrix on the precomputed */
00424 /*          input file.) */
00425 
00426 /*  H       (workspace) COMPLEX array, dimension (LDA, max(NN,12)) */
00427 /*          Another copy of the test matrix A, modified by CGEEVX. */
00428 
00429 /*  W       (workspace) COMPLEX array, dimension (max(NN,12)) */
00430 /*          Contains the eigenvalues of A. */
00431 
00432 /*  W1      (workspace) COMPLEX array, dimension (max(NN,12)) */
00433 /*          Like W, this array contains the eigenvalues of A, */
00434 /*          but those computed when CGEEVX only computes a partial */
00435 /*          eigendecomposition, i.e. not the eigenvalues and left */
00436 /*          and right eigenvectors. */
00437 
00438 /*  VL      (workspace) COMPLEX array, dimension (LDVL, max(NN,12)) */
00439 /*          VL holds the computed left eigenvectors. */
00440 
00441 /*  LDVL    (input) INTEGER */
00442 /*          Leading dimension of VL. Must be at least max(1,max(NN,12)). */
00443 
00444 /*  VR      (workspace) COMPLEX array, dimension (LDVR, max(NN,12)) */
00445 /*          VR holds the computed right eigenvectors. */
00446 
00447 /*  LDVR    (input) INTEGER */
00448 /*          Leading dimension of VR. Must be at least max(1,max(NN,12)). */
00449 
00450 /*  LRE     (workspace) COMPLEX array, dimension (LDLRE, max(NN,12)) */
00451 /*          LRE holds the computed right or left eigenvectors. */
00452 
00453 /*  LDLRE   (input) INTEGER */
00454 /*          Leading dimension of LRE. Must be at least max(1,max(NN,12)) */
00455 
00456 /*  RESULT  (output) REAL array, dimension (11) */
00457 /*          The values computed by the seven tests described above. */
00458 /*          The values are currently limited to 1/ulp, to avoid */
00459 /*          overflow. */
00460 
00461 /*  WORK    (workspace) COMPLEX array, dimension (NWORK) */
00462 
00463 /*  NWORK   (input) INTEGER */
00464 /*          The number of entries in WORK.  This must be at least */
00465 /*          max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = */
00466 /*          max(    360     ,6*NN(j)+2*NN(j)**2)    for all j. */
00467 
00468 /*  RWORK   (workspace) REAL array, dimension (2*max(NN,12)) */
00469 
00470 /*  INFO    (output) INTEGER */
00471 /*          If 0,  then successful exit. */
00472 /*          If <0, then input paramter -INFO is incorrect. */
00473 /*          If >0, CLATMR, CLATMS, CLATME or CGET23 returned an error */
00474 /*                 code, and INFO is its absolute value. */
00475 
00476 /* ----------------------------------------------------------------------- */
00477 
00478 /*     Some Local Variables and Parameters: */
00479 /*     ---- ----- --------- --- ---------- */
00480 
00481 /*     ZERO, ONE       Real 0 and 1. */
00482 /*     MAXTYP          The number of types defined. */
00483 /*     NMAX            Largest value in NN or 12. */
00484 /*     NERRS           The number of tests which have exceeded THRESH */
00485 /*     COND, CONDS, */
00486 /*     IMODE           Values to be passed to the matrix generators. */
00487 /*     ANORM           Norm of A; passed to matrix generators. */
00488 
00489 /*     OVFL, UNFL      Overflow and underflow thresholds. */
00490 /*     ULP, ULPINV     Finest relative precision and its inverse. */
00491 /*     RTULP, RTULPI   Square roots of the previous 4 values. */
00492 
00493 /*             The following four arrays decode JTYPE: */
00494 /*     KTYPE(j)        The general type (1-10) for type "j". */
00495 /*     KMODE(j)        The MODE value to be passed to the matrix */
00496 /*                     generator for type "j". */
00497 /*     KMAGN(j)        The order of magnitude ( O(1), */
00498 /*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
00499 /*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
00500 /*                     1/sqrt(ulp).  (0 means irrelevant.) */
00501 
00502 /*  ===================================================================== */
00503 
00504 /*     .. Parameters .. */
00505 /*     .. */
00506 /*     .. Local Scalars .. */
00507 /*     .. */
00508 /*     .. Local Arrays .. */
00509 /*     .. */
00510 /*     .. External Functions .. */
00511 /*     .. */
00512 /*     .. External Subroutines .. */
00513 /*     .. */
00514 /*     .. Intrinsic Functions .. */
00515 /*     .. */
00516 /*     .. Data statements .. */
00517     /* Parameter adjustments */
00518     --nn;
00519     --dotype;
00520     --iseed;
00521     h_dim1 = *lda;
00522     h_offset = 1 + h_dim1;
00523     h__ -= h_offset;
00524     a_dim1 = *lda;
00525     a_offset = 1 + a_dim1;
00526     a -= a_offset;
00527     --w;
00528     --w1;
00529     vl_dim1 = *ldvl;
00530     vl_offset = 1 + vl_dim1;
00531     vl -= vl_offset;
00532     vr_dim1 = *ldvr;
00533     vr_offset = 1 + vr_dim1;
00534     vr -= vr_offset;
00535     lre_dim1 = *ldlre;
00536     lre_offset = 1 + lre_dim1;
00537     lre -= lre_offset;
00538     --rcondv;
00539     --rcndv1;
00540     --rcdvin;
00541     --rconde;
00542     --rcnde1;
00543     --rcdein;
00544     --scale;
00545     --scale1;
00546     --result;
00547     --work;
00548     --rwork;
00549 
00550     /* Function Body */
00551 /*     .. */
00552 /*     .. Executable Statements .. */
00553 
00554     s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
00555     s_copy(path + 1, "VX", (ftnlen)2, (ftnlen)2);
00556 
00557 /*     Check for errors */
00558 
00559     ntestt = 0;
00560     ntestf = 0;
00561     *info = 0;
00562 
00563 /*     Important constants */
00564 
00565     badnn = FALSE_;
00566 
00567 /*     7 is the largest dimension in the input file of precomputed */
00568 /*     problems */
00569 
00570     nmax = 7;
00571     i__1 = *nsizes;
00572     for (j = 1; j <= i__1; ++j) {
00573 /* Computing MAX */
00574         i__2 = nmax, i__3 = nn[j];
00575         nmax = max(i__2,i__3);
00576         if (nn[j] < 0) {
00577             badnn = TRUE_;
00578         }
00579 /* L10: */
00580     }
00581 
00582 /*     Check for errors */
00583 
00584     if (*nsizes < 0) {
00585         *info = -1;
00586     } else if (badnn) {
00587         *info = -2;
00588     } else if (*ntypes < 0) {
00589         *info = -3;
00590     } else if (*thresh < 0.f) {
00591         *info = -6;
00592     } else if (*lda < 1 || *lda < nmax) {
00593         *info = -10;
00594     } else if (*ldvl < 1 || *ldvl < nmax) {
00595         *info = -15;
00596     } else if (*ldvr < 1 || *ldvr < nmax) {
00597         *info = -17;
00598     } else if (*ldlre < 1 || *ldlre < nmax) {
00599         *info = -19;
00600     } else /* if(complicated condition) */ {
00601 /* Computing 2nd power */
00602         i__1 = nmax;
00603         if (nmax * 6 + (i__1 * i__1 << 1) > *nwork) {
00604             *info = -30;
00605         }
00606     }
00607 
00608     if (*info != 0) {
00609         i__1 = -(*info);
00610         xerbla_("CDRVVX", &i__1);
00611         return 0;
00612     }
00613 
00614 /*     If nothing to do check on NIUNIT */
00615 
00616     if (*nsizes == 0 || *ntypes == 0) {
00617         goto L160;
00618     }
00619 
00620 /*     More Important constants */
00621 
00622     unfl = slamch_("Safe minimum");
00623     ovfl = 1.f / unfl;
00624     slabad_(&unfl, &ovfl);
00625     ulp = slamch_("Precision");
00626     ulpinv = 1.f / ulp;
00627     rtulp = sqrt(ulp);
00628     rtulpi = 1.f / rtulp;
00629 
00630 /*     Loop over sizes, types */
00631 
00632     nerrs = 0;
00633 
00634     i__1 = *nsizes;
00635     for (jsize = 1; jsize <= i__1; ++jsize) {
00636         n = nn[jsize];
00637         if (*nsizes != 1) {
00638             mtypes = min(21,*ntypes);
00639         } else {
00640             mtypes = min(22,*ntypes);
00641         }
00642 
00643         i__2 = mtypes;
00644         for (jtype = 1; jtype <= i__2; ++jtype) {
00645             if (! dotype[jtype]) {
00646                 goto L140;
00647             }
00648 
00649 /*           Save ISEED in case of an error. */
00650 
00651             for (j = 1; j <= 4; ++j) {
00652                 ioldsd[j - 1] = iseed[j];
00653 /* L20: */
00654             }
00655 
00656 /*           Compute "A" */
00657 
00658 /*           Control parameters: */
00659 
00660 /*           KMAGN  KCONDS  KMODE        KTYPE */
00661 /*       =1  O(1)   1       clustered 1  zero */
00662 /*       =2  large  large   clustered 2  identity */
00663 /*       =3  small          exponential  Jordan */
00664 /*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
00665 /*       =5                 random log   symmetric, w/ eigenvalues */
00666 /*       =6                 random       general, w/ eigenvalues */
00667 /*       =7                              random diagonal */
00668 /*       =8                              random symmetric */
00669 /*       =9                              random general */
00670 /*       =10                             random triangular */
00671 
00672             if (mtypes > 21) {
00673                 goto L90;
00674             }
00675 
00676             itype = ktype[jtype - 1];
00677             imode = kmode[jtype - 1];
00678 
00679 /*           Compute norm */
00680 
00681             switch (kmagn[jtype - 1]) {
00682                 case 1:  goto L30;
00683                 case 2:  goto L40;
00684                 case 3:  goto L50;
00685             }
00686 
00687 L30:
00688             anorm = 1.f;
00689             goto L60;
00690 
00691 L40:
00692             anorm = ovfl * ulp;
00693             goto L60;
00694 
00695 L50:
00696             anorm = unfl * ulpinv;
00697             goto L60;
00698 
00699 L60:
00700 
00701             claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
00702             iinfo = 0;
00703             cond = ulpinv;
00704 
00705 /*           Special Matrices -- Identity & Jordan block */
00706 
00707 /*              Zero */
00708 
00709             if (itype == 1) {
00710                 iinfo = 0;
00711 
00712             } else if (itype == 2) {
00713 
00714 /*              Identity */
00715 
00716                 i__3 = n;
00717                 for (jcol = 1; jcol <= i__3; ++jcol) {
00718                     i__4 = jcol + jcol * a_dim1;
00719                     a[i__4].r = anorm, a[i__4].i = 0.f;
00720 /* L70: */
00721                 }
00722 
00723             } else if (itype == 3) {
00724 
00725 /*              Jordan Block */
00726 
00727                 i__3 = n;
00728                 for (jcol = 1; jcol <= i__3; ++jcol) {
00729                     i__4 = jcol + jcol * a_dim1;
00730                     a[i__4].r = anorm, a[i__4].i = 0.f;
00731                     if (jcol > 1) {
00732                         i__4 = jcol + (jcol - 1) * a_dim1;
00733                         a[i__4].r = 1.f, a[i__4].i = 0.f;
00734                     }
00735 /* L80: */
00736                 }
00737 
00738             } else if (itype == 4) {
00739 
00740 /*              Diagonal Matrix, [Eigen]values Specified */
00741 
00742                 clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00743                          &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[
00744                         n + 1], &iinfo);
00745 
00746             } else if (itype == 5) {
00747 
00748 /*              Symmetric, eigenvalues specified */
00749 
00750                 clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00751                          &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
00752                          &iinfo);
00753 
00754             } else if (itype == 6) {
00755 
00756 /*              General, eigenvalues specified */
00757 
00758                 if (kconds[jtype - 1] == 1) {
00759                     conds = 1.f;
00760                 } else if (kconds[jtype - 1] == 2) {
00761                     conds = rtulpi;
00762                 } else {
00763                     conds = 0.f;
00764                 }
00765 
00766                 clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
00767                         " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
00768                         &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &
00769                         iinfo);
00770 
00771             } else if (itype == 7) {
00772 
00773 /*              Diagonal, random eigenvalues */
00774 
00775                 clatmr_(&n, &n, "D", &iseed[1], "S", &work[1], &c__6, &c_b39, 
00776                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00777                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, &
00778                         c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, idumma, 
00779                          &iinfo);
00780 
00781             } else if (itype == 8) {
00782 
00783 /*              Symmetric, random eigenvalues */
00784 
00785                 clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b39, 
00786                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00787                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00788                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00789                         iinfo);
00790 
00791             } else if (itype == 9) {
00792 
00793 /*              General, random eigenvalues */
00794 
00795                 clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00796                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00797                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00798                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00799                         iinfo);
00800                 if (n >= 4) {
00801                     claset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], 
00802                             lda);
00803                     i__3 = n - 3;
00804                     claset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3]
00805 , lda);
00806                     i__3 = n - 3;
00807                     claset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * 
00808                             a_dim1 + 3], lda);
00809                     claset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], 
00810                             lda);
00811                 }
00812 
00813             } else if (itype == 10) {
00814 
00815 /*              Triangular, random eigenvalues */
00816 
00817                 clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00818                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00819                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &c__0, &
00820                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00821                         iinfo);
00822 
00823             } else {
00824 
00825                 iinfo = 1;
00826             }
00827 
00828             if (iinfo != 0) {
00829                 io___32.ciunit = *nounit;
00830                 s_wsfe(&io___32);
00831                 do_fio(&c__1, "Generator", (ftnlen)9);
00832                 do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00833                 do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00834                 do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00835                 do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
00836                 e_wsfe();
00837                 *info = abs(iinfo);
00838                 return 0;
00839             }
00840 
00841 L90:
00842 
00843 /*           Test for minimal and generous workspace */
00844 
00845             for (iwk = 1; iwk <= 3; ++iwk) {
00846                 if (iwk == 1) {
00847                     nnwork = n << 1;
00848                 } else if (iwk == 2) {
00849 /* Computing 2nd power */
00850                     i__3 = n;
00851                     nnwork = (n << 1) + i__3 * i__3;
00852                 } else {
00853 /* Computing 2nd power */
00854                     i__3 = n;
00855                     nnwork = n * 6 + (i__3 * i__3 << 1);
00856                 }
00857                 nnwork = max(nnwork,1);
00858 
00859 /*              Test for all balancing options */
00860 
00861                 for (ibal = 1; ibal <= 4; ++ibal) {
00862                     *(unsigned char *)balanc = *(unsigned char *)&bal[ibal - 
00863                             1];
00864 
00865 /*                 Perform tests */
00866 
00867                     cget23_(&c_false, &c__0, balanc, &jtype, thresh, ioldsd, 
00868                             nounit, &n, &a[a_offset], lda, &h__[h_offset], &w[
00869                             1], &w1[1], &vl[vl_offset], ldvl, &vr[vr_offset], 
00870                             ldvr, &lre[lre_offset], ldlre, &rcondv[1], &
00871                             rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &
00872                             rcdein[1], &scale[1], &scale1[1], &result[1], &
00873                             work[1], &nnwork, &rwork[1], info);
00874 
00875 /*                 Check for RESULT(j) > THRESH */
00876 
00877                     ntest = 0;
00878                     nfail = 0;
00879                     for (j = 1; j <= 9; ++j) {
00880                         if (result[j] >= 0.f) {
00881                             ++ntest;
00882                         }
00883                         if (result[j] >= *thresh) {
00884                             ++nfail;
00885                         }
00886 /* L100: */
00887                     }
00888 
00889                     if (nfail > 0) {
00890                         ++ntestf;
00891                     }
00892                     if (ntestf == 1) {
00893                         io___39.ciunit = *nounit;
00894                         s_wsfe(&io___39);
00895                         do_fio(&c__1, path, (ftnlen)3);
00896                         e_wsfe();
00897                         io___40.ciunit = *nounit;
00898                         s_wsfe(&io___40);
00899                         e_wsfe();
00900                         io___41.ciunit = *nounit;
00901                         s_wsfe(&io___41);
00902                         e_wsfe();
00903                         io___42.ciunit = *nounit;
00904                         s_wsfe(&io___42);
00905                         e_wsfe();
00906                         io___43.ciunit = *nounit;
00907                         s_wsfe(&io___43);
00908                         do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real)
00909                                 );
00910                         e_wsfe();
00911                         ntestf = 2;
00912                     }
00913 
00914                     for (j = 1; j <= 9; ++j) {
00915                         if (result[j] >= *thresh) {
00916                             io___44.ciunit = *nounit;
00917                             s_wsfe(&io___44);
00918                             do_fio(&c__1, balanc, (ftnlen)1);
00919                             do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
00920                                     ;
00921                             do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(
00922                                     integer));
00923                             do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
00924                                     integer));
00925                             do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
00926                                     integer));
00927                             do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer))
00928                                     ;
00929                             do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
00930                                     real));
00931                             e_wsfe();
00932                         }
00933 /* L110: */
00934                     }
00935 
00936                     nerrs += nfail;
00937                     ntestt += ntest;
00938 
00939 /* L120: */
00940                 }
00941 /* L130: */
00942             }
00943 L140:
00944             ;
00945         }
00946 /* L150: */
00947     }
00948 
00949 L160:
00950 
00951 /*     Read in data from file to check accuracy of condition estimation. */
00952 /*     Assume input eigenvalues are sorted lexicographically (increasing */
00953 /*     by real part, then decreasing by imaginary part) */
00954 
00955     jtype = 0;
00956 L170:
00957     io___45.ciunit = *niunit;
00958     i__1 = s_rsle(&io___45);
00959     if (i__1 != 0) {
00960         goto L220;
00961     }
00962     i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
00963     if (i__1 != 0) {
00964         goto L220;
00965     }
00966     i__1 = do_lio(&c__3, &c__1, (char *)&isrt, (ftnlen)sizeof(integer));
00967     if (i__1 != 0) {
00968         goto L220;
00969     }
00970     i__1 = e_rsle();
00971     if (i__1 != 0) {
00972         goto L220;
00973     }
00974 
00975 /*     Read input data until N=0 */
00976 
00977     if (n == 0) {
00978         goto L220;
00979     }
00980     ++jtype;
00981     iseed[1] = jtype;
00982     i__1 = n;
00983     for (i__ = 1; i__ <= i__1; ++i__) {
00984         io___48.ciunit = *niunit;
00985         s_rsle(&io___48);
00986         i__2 = n;
00987         for (j = 1; j <= i__2; ++j) {
00988             do_lio(&c__6, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
00989                     complex));
00990         }
00991         e_rsle();
00992 /* L180: */
00993     }
00994     i__1 = n;
00995     for (i__ = 1; i__ <= i__1; ++i__) {
00996         io___49.ciunit = *niunit;
00997         s_rsle(&io___49);
00998         do_lio(&c__4, &c__1, (char *)&wr, (ftnlen)sizeof(real));
00999         do_lio(&c__4, &c__1, (char *)&wi, (ftnlen)sizeof(real));
01000         do_lio(&c__4, &c__1, (char *)&rcdein[i__], (ftnlen)sizeof(real));
01001         do_lio(&c__4, &c__1, (char *)&rcdvin[i__], (ftnlen)sizeof(real));
01002         e_rsle();
01003         i__2 = i__;
01004         q__1.r = wr, q__1.i = wi;
01005         w1[i__2].r = q__1.r, w1[i__2].i = q__1.i;
01006 /* L190: */
01007     }
01008 /* Computing 2nd power */
01009     i__2 = n;
01010     i__1 = n * 6 + (i__2 * i__2 << 1);
01011     cget23_(&c_true, &isrt, "N", &c__22, thresh, &iseed[1], nounit, &n, &a[
01012             a_offset], lda, &h__[h_offset], &w[1], &w1[1], &vl[vl_offset], 
01013             ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &rcondv[1], &
01014             rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &rcdein[1], &scale[
01015             1], &scale1[1], &result[1], &work[1], &i__1, &rwork[1], info);
01016 
01017 /*     Check for RESULT(j) > THRESH */
01018 
01019     ntest = 0;
01020     nfail = 0;
01021     for (j = 1; j <= 11; ++j) {
01022         if (result[j] >= 0.f) {
01023             ++ntest;
01024         }
01025         if (result[j] >= *thresh) {
01026             ++nfail;
01027         }
01028 /* L200: */
01029     }
01030 
01031     if (nfail > 0) {
01032         ++ntestf;
01033     }
01034     if (ntestf == 1) {
01035         io___52.ciunit = *nounit;
01036         s_wsfe(&io___52);
01037         do_fio(&c__1, path, (ftnlen)3);
01038         e_wsfe();
01039         io___53.ciunit = *nounit;
01040         s_wsfe(&io___53);
01041         e_wsfe();
01042         io___54.ciunit = *nounit;
01043         s_wsfe(&io___54);
01044         e_wsfe();
01045         io___55.ciunit = *nounit;
01046         s_wsfe(&io___55);
01047         e_wsfe();
01048         io___56.ciunit = *nounit;
01049         s_wsfe(&io___56);
01050         do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
01051         e_wsfe();
01052         ntestf = 2;
01053     }
01054 
01055     for (j = 1; j <= 11; ++j) {
01056         if (result[j] >= *thresh) {
01057             io___57.ciunit = *nounit;
01058             s_wsfe(&io___57);
01059             do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
01060             do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
01061             do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
01062             do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real));
01063             e_wsfe();
01064         }
01065 /* L210: */
01066     }
01067 
01068     nerrs += nfail;
01069     ntestt += ntest;
01070     goto L170;
01071 L220:
01072 
01073 /*     Summary */
01074 
01075     slasum_(path, nounit, &nerrs, &ntestt);
01076 
01077 
01078 
01079     return 0;
01080 
01081 /*     End of CDRVVX */
01082 
01083 } /* cdrvvx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:22