cdrvsx.c
Go to the documentation of this file.
00001 /* cdrvsx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     integer selopt, seldim;
00020     logical selval[20];
00021     real selwr[20], selwi[20];
00022 } sslct_;
00023 
00024 #define sslct_1 sslct_
00025 
00026 /* Table of constant values */
00027 
00028 static complex c_b1 = {0.f,0.f};
00029 static complex c_b2 = {1.f,0.f};
00030 static integer c__0 = 0;
00031 static integer c__4 = 4;
00032 static integer c__6 = 6;
00033 static real c_b39 = 1.f;
00034 static integer c__1 = 1;
00035 static real c_b49 = 0.f;
00036 static integer c__2 = 2;
00037 static logical c_false = FALSE_;
00038 static integer c__3 = 3;
00039 static logical c_true = TRUE_;
00040 static integer c__22 = 22;
00041 
00042 /* Subroutine */ int cdrvsx_(integer *nsizes, integer *nn, integer *ntypes, 
00043         logical *dotype, integer *iseed, real *thresh, integer *niunit, 
00044         integer *nounit, complex *a, integer *lda, complex *h__, complex *ht, 
00045         complex *w, complex *wt, complex *wtmp, complex *vs, integer *ldvs, 
00046         complex *vs1, real *result, complex *work, integer *lwork, real *
00047         rwork, logical *bwork, integer *info)
00048 {
00049     /* Initialized data */
00050 
00051     static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
00052     static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
00053     static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
00054     static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
00055 
00056     /* Format strings */
00057     static char fmt_9991[] = "(\002 CDRVSX: \002,a,\002 returned INFO=\002,i"
00058             "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
00059             "(\002,3(i5,\002,\002),i5,\002)\002)";
00060     static char fmt_9999[] = "(/1x,a3,\002 -- Complex Schur Form Decompositi"
00061             "on Expert \002,\002Driver\002,/\002 Matrix types (see CDRVSX for"
00062             " details): \002)";
00063     static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
00064             "rix.             \002,\002           \002,\002  5=Diagonal: geom"
00065             "etr. spaced entries.\002,/\002  2=Identity matrix.              "
00066             "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
00067             "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
00068             " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
00069             "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
00070             "ll, evenly spaced.\002)";
00071     static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
00072             "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
00073             "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
00074             "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
00075             "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
00076             "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
00077             " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
00078             "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
00079             "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
00080             ",\002 complx \002)";
00081     static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
00082             " \002,\002 21=Matrix \002,\002with small random entries.\002,"
00083             "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
00084     static char fmt_9995[] = "(\002 Tests performed with test threshold ="
00085             "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
00086             "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
00087             " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
00088             "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
00089             " (no sort) \002,/\002 4 = 0 if W are eigenvalues of T (no sort)"
00090             ",\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T same no matter "
00091             "if VS computed (no sort),\002,\002  1/ulp otherwise\002,/\002 6 "
00092             "= 0 if W same no matter if VS computed (no sort)\002,\002,  1/ul"
00093             "p otherwise\002)";
00094     static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
00095             ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
00096             "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
00097             "( n ulp ) (sort) \002,/\002 10 = 0 if W are eigenvalues of T (so"
00098             "rt),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if T same no mat"
00099             "ter what else computed (sort),\002,\002  1/ulp otherwise\002,"
00100             "/\002 12 = 0 if W same no matter what else computed \002,\002(so"
00101             "rt), 1/ulp otherwise\002,/\002 13 = 0 if sorting succesful, 1/ul"
00102             "p otherwise\002,/\002 14 = 0 if RCONDE same no matter what else "
00103             "computed,\002,\002 1/ulp otherwise\002,/\002 15 = 0 if RCONDv sa"
00104             "me no matter what else computed,\002,\002 1/ulp otherwise\002,"
00105             "/\002 16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002,/"
00106             "\002 17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002)";
00107     static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
00108             "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
00109             "\002,g10.3)";
00110     static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3"
00111             ",\002,  test(\002,i2,\002)=\002,g10.3)";
00112 
00113     /* System generated locals */
00114     integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
00115             vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4;
00116 
00117     /* Builtin functions */
00118     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00119     double sqrt(doublereal);
00120     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
00121              s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
00122             e_rsle(void);
00123 
00124     /* Local variables */
00125     integer i__, j, n, iwk;
00126     real ulp, cond;
00127     integer jcol;
00128     char path[3];
00129     integer nmax;
00130     real unfl, ovfl;
00131     integer isrt;
00132     logical badnn;
00133     extern /* Subroutine */ int cget24_(logical *, integer *, real *, integer 
00134             *, integer *, integer *, complex *, integer *, complex *, complex 
00135             *, complex *, complex *, complex *, complex *, integer *, complex 
00136             *, real *, real *, integer *, integer *, integer *, real *, 
00137             complex *, integer *, real *, logical *, integer *);
00138     integer nfail, imode, iinfo;
00139     real conds, anorm;
00140     integer islct[20], nslct, jsize, nerrs, itype, jtype, ntest;
00141     real rtulp;
00142     extern /* Subroutine */ int slabad_(real *, real *);
00143     real rcdein;
00144     extern /* Subroutine */ int clatme_(integer *, char *, integer *, complex 
00145             *, integer *, real *, complex *, char *, char *, char *, char *, 
00146             real *, integer *, real *, integer *, integer *, real *, complex *
00147 , integer *, complex *, integer *);
00148     extern doublereal slamch_(char *);
00149     extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
00150             *, complex *, complex *, integer *);
00151     integer idumma[1], ioldsd[4];
00152     extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_(
00153             integer *, integer *, char *, integer *, char *, complex *, 
00154             integer *, real *, complex *, char *, char *, complex *, integer *
00155 , real *, complex *, integer *, real *, char *, integer *, 
00156             integer *, integer *, real *, real *, char *, complex *, integer *
00157 , integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, 
00158             real *, integer *, real *, real *, integer *, integer *, char *, 
00159             complex *, integer *, complex *, integer *);
00160     real rcdvin;
00161     integer ntestf;
00162     extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
00163             *);
00164     real ulpinv;
00165     integer nnwork;
00166     real rtulpi;
00167     integer mtypes, ntestt;
00168 
00169     /* Fortran I/O blocks */
00170     static cilist io___31 = { 0, 0, 0, fmt_9991, 0 };
00171     static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
00172     static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
00173     static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
00174     static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
00175     static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
00176     static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
00177     static cilist io___46 = { 0, 0, 0, fmt_9993, 0 };
00178     static cilist io___47 = { 0, 0, 1, 0, 0 };
00179     static cilist io___49 = { 0, 0, 0, 0, 0 };
00180     static cilist io___51 = { 0, 0, 0, 0, 0 };
00181     static cilist io___52 = { 0, 0, 0, 0, 0 };
00182     static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
00183     static cilist io___54 = { 0, 0, 0, fmt_9998, 0 };
00184     static cilist io___55 = { 0, 0, 0, fmt_9997, 0 };
00185     static cilist io___56 = { 0, 0, 0, fmt_9996, 0 };
00186     static cilist io___57 = { 0, 0, 0, fmt_9995, 0 };
00187     static cilist io___58 = { 0, 0, 0, fmt_9994, 0 };
00188     static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };
00189 
00190 
00191 
00192 /*  -- LAPACK test routine (version 3.1) -- */
00193 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00194 /*     November 2006 */
00195 
00196 /*     .. Scalar Arguments .. */
00197 /*     .. */
00198 /*     .. Array Arguments .. */
00199 /*     .. */
00200 
00201 /*  Purpose */
00202 /*  ======= */
00203 
00204 /*     CDRVSX checks the nonsymmetric eigenvalue (Schur form) problem */
00205 /*     expert driver CGEESX. */
00206 
00207 /*     CDRVSX uses both test matrices generated randomly depending on */
00208 /*     data supplied in the calling sequence, as well as on data */
00209 /*     read from an input file and including precomputed condition */
00210 /*     numbers to which it compares the ones it computes. */
00211 
00212 /*     When CDRVSX is called, a number of matrix "sizes" ("n's") and a */
00213 /*     number of matrix "types" are specified.  For each size ("n") */
00214 /*     and each type of matrix, one matrix will be generated and used */
00215 /*     to test the nonsymmetric eigenroutines.  For each matrix, 15 */
00216 /*     tests will be performed: */
00217 
00218 /*     (1)     0 if T is in Schur form, 1/ulp otherwise */
00219 /*            (no sorting of eigenvalues) */
00220 
00221 /*     (2)     | A - VS T VS' | / ( n |A| ulp ) */
00222 
00223 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00224 /*       form  (no sorting of eigenvalues). */
00225 
00226 /*     (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */
00227 
00228 /*     (4)     0     if W are eigenvalues of T */
00229 /*             1/ulp otherwise */
00230 /*             (no sorting of eigenvalues) */
00231 
00232 /*     (5)     0     if T(with VS) = T(without VS), */
00233 /*             1/ulp otherwise */
00234 /*             (no sorting of eigenvalues) */
00235 
00236 /*     (6)     0     if eigenvalues(with VS) = eigenvalues(without VS), */
00237 /*             1/ulp otherwise */
00238 /*             (no sorting of eigenvalues) */
00239 
00240 /*     (7)     0 if T is in Schur form, 1/ulp otherwise */
00241 /*             (with sorting of eigenvalues) */
00242 
00243 /*     (8)     | A - VS T VS' | / ( n |A| ulp ) */
00244 
00245 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00246 /*       form  (with sorting of eigenvalues). */
00247 
00248 /*     (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */
00249 
00250 /*     (10)    0     if W are eigenvalues of T */
00251 /*             1/ulp otherwise */
00252 /*             If workspace sufficient, also compare W with and */
00253 /*             without reciprocal condition numbers */
00254 /*             (with sorting of eigenvalues) */
00255 
00256 /*     (11)    0     if T(with VS) = T(without VS), */
00257 /*             1/ulp otherwise */
00258 /*             If workspace sufficient, also compare T with and without */
00259 /*             reciprocal condition numbers */
00260 /*             (with sorting of eigenvalues) */
00261 
00262 /*     (12)    0     if eigenvalues(with VS) = eigenvalues(without VS), */
00263 /*             1/ulp otherwise */
00264 /*             If workspace sufficient, also compare VS with and without */
00265 /*             reciprocal condition numbers */
00266 /*             (with sorting of eigenvalues) */
00267 
00268 /*     (13)    if sorting worked and SDIM is the number of */
00269 /*             eigenvalues which were SELECTed */
00270 /*             If workspace sufficient, also compare SDIM with and */
00271 /*             without reciprocal condition numbers */
00272 
00273 /*     (14)    if RCONDE the same no matter if VS and/or RCONDV computed */
00274 
00275 /*     (15)    if RCONDV the same no matter if VS and/or RCONDE computed */
00276 
00277 /*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
00278 /*     each element NN(j) specifies one size. */
00279 /*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
00280 /*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
00281 /*     Currently, the list of possible types is: */
00282 
00283 /*     (1)  The zero matrix. */
00284 /*     (2)  The identity matrix. */
00285 /*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */
00286 
00287 /*     (4)  A diagonal matrix with evenly spaced entries */
00288 /*          1, ..., ULP  and random complex angles. */
00289 /*          (ULP = (first number larger than 1) - 1 ) */
00290 /*     (5)  A diagonal matrix with geometrically spaced entries */
00291 /*          1, ..., ULP  and random complex angles. */
00292 /*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
00293 /*          and random complex angles. */
00294 
00295 /*     (7)  Same as (4), but multiplied by a constant near */
00296 /*          the overflow threshold */
00297 /*     (8)  Same as (4), but multiplied by a constant near */
00298 /*          the underflow threshold */
00299 
00300 /*     (9)  A matrix of the form  U' T U, where U is unitary and */
00301 /*          T has evenly spaced entries 1, ..., ULP with random */
00302 /*          complex angles on the diagonal and random O(1) entries in */
00303 /*          the upper triangle. */
00304 
00305 /*     (10) A matrix of the form  U' T U, where U is unitary and */
00306 /*          T has geometrically spaced entries 1, ..., ULP with random */
00307 /*          complex angles on the diagonal and random O(1) entries in */
00308 /*          the upper triangle. */
00309 
00310 /*     (11) A matrix of the form  U' T U, where U is orthogonal and */
00311 /*          T has "clustered" entries 1, ULP,..., ULP with random */
00312 /*          complex angles on the diagonal and random O(1) entries in */
00313 /*          the upper triangle. */
00314 
00315 /*     (12) A matrix of the form  U' T U, where U is unitary and */
00316 /*          T has complex eigenvalues randomly chosen from */
00317 /*          ULP < |z| < 1   and random O(1) entries in the upper */
00318 /*          triangle. */
00319 
00320 /*     (13) A matrix of the form  X' T X, where X has condition */
00321 /*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
00322 /*          with random complex angles on the diagonal and random O(1) */
00323 /*          entries in the upper triangle. */
00324 
00325 /*     (14) A matrix of the form  X' T X, where X has condition */
00326 /*          SQRT( ULP ) and T has geometrically spaced entries */
00327 /*          1, ..., ULP with random complex angles on the diagonal */
00328 /*          and random O(1) entries in the upper triangle. */
00329 
00330 /*     (15) A matrix of the form  X' T X, where X has condition */
00331 /*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
00332 /*          with random complex angles on the diagonal and random O(1) */
00333 /*          entries in the upper triangle. */
00334 
00335 /*     (16) A matrix of the form  X' T X, where X has condition */
00336 /*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
00337 /*          from ULP < |z| < 1 and random O(1) entries in the upper */
00338 /*          triangle. */
00339 
00340 /*     (17) Same as (16), but multiplied by a constant */
00341 /*          near the overflow threshold */
00342 /*     (18) Same as (16), but multiplied by a constant */
00343 /*          near the underflow threshold */
00344 
00345 /*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
00346 /*          If N is at least 4, all entries in first two rows and last */
00347 /*          row, and first column and last two columns are zero. */
00348 /*     (20) Same as (19), but multiplied by a constant */
00349 /*          near the overflow threshold */
00350 /*     (21) Same as (19), but multiplied by a constant */
00351 /*          near the underflow threshold */
00352 
00353 /*     In addition, an input file will be read from logical unit number */
00354 /*     NIUNIT. The file contains matrices along with precomputed */
00355 /*     eigenvalues and reciprocal condition numbers for the eigenvalue */
00356 /*     average and right invariant subspace. For these matrices, in */
00357 /*     addition to tests (1) to (15) we will compute the following two */
00358 /*     tests: */
00359 
00360 /*    (16)  |RCONDE - RCDEIN| / cond(RCONDE) */
00361 
00362 /*       RCONDE is the reciprocal average eigenvalue condition number */
00363 /*       computed by CGEESX and RCDEIN (the precomputed true value) */
00364 /*       is supplied as input.  cond(RCONDE) is the condition number */
00365 /*       of RCONDE, and takes errors in computing RCONDE into account, */
00366 /*       so that the resulting quantity should be O(ULP). cond(RCONDE) */
00367 /*       is essentially given by norm(A)/RCONDV. */
00368 
00369 /*    (17)  |RCONDV - RCDVIN| / cond(RCONDV) */
00370 
00371 /*       RCONDV is the reciprocal right invariant subspace condition */
00372 /*       number computed by CGEESX and RCDVIN (the precomputed true */
00373 /*       value) is supplied as input. cond(RCONDV) is the condition */
00374 /*       number of RCONDV, and takes errors in computing RCONDV into */
00375 /*       account, so that the resulting quantity should be O(ULP). */
00376 /*       cond(RCONDV) is essentially given by norm(A)/RCONDE. */
00377 
00378 /*  Arguments */
00379 /*  ========= */
00380 
00381 /*  NSIZES  (input) INTEGER */
00382 /*          The number of sizes of matrices to use.  NSIZES must be at */
00383 /*          least zero. If it is zero, no randomly generated matrices */
00384 /*          are tested, but any test matrices read from NIUNIT will be */
00385 /*          tested. */
00386 
00387 /*  NN      (input) INTEGER array, dimension (NSIZES) */
00388 /*          An array containing the sizes to be used for the matrices. */
00389 /*          Zero values will be skipped.  The values must be at least */
00390 /*          zero. */
00391 
00392 /*  NTYPES  (input) INTEGER */
00393 /*          The number of elements in DOTYPE. NTYPES must be at least */
00394 /*          zero. If it is zero, no randomly generated test matrices */
00395 /*          are tested, but and test matrices read from NIUNIT will be */
00396 /*          tested. If it is MAXTYP+1 and NSIZES is 1, then an */
00397 /*          additional type, MAXTYP+1 is defined, which is to use */
00398 /*          whatever matrix is in A.  This is only useful if */
00399 /*          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */
00400 
00401 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00402 /*          If DOTYPE(j) is .TRUE., then for each size in NN a */
00403 /*          matrix of that size and of type j will be generated. */
00404 /*          If NTYPES is smaller than the maximum number of types */
00405 /*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
00406 /*          MAXTYP will not be generated.  If NTYPES is larger */
00407 /*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
00408 /*          will be ignored. */
00409 
00410 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00411 /*          On entry ISEED specifies the seed of the random number */
00412 /*          generator. The array elements should be between 0 and 4095; */
00413 /*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
00414 /*          be odd.  The random number generator uses a linear */
00415 /*          congruential sequence limited to small integers, and so */
00416 /*          should produce machine independent random numbers. The */
00417 /*          values of ISEED are changed on exit, and can be used in the */
00418 /*          next call to CDRVSX to continue the same random number */
00419 /*          sequence. */
00420 
00421 /*  THRESH  (input) REAL */
00422 /*          A test will count as "failed" if the "error", computed as */
00423 /*          described above, exceeds THRESH.  Note that the error */
00424 /*          is scaled to be O(1), so THRESH should be a reasonably */
00425 /*          small multiple of 1, e.g., 10 or 100.  In particular, */
00426 /*          it should not depend on the precision (single vs. double) */
00427 /*          or the size of the matrix.  It must be at least zero. */
00428 
00429 /*  NIUNIT  (input) INTEGER */
00430 /*          The FORTRAN unit number for reading in the data file of */
00431 /*          problems to solve. */
00432 
00433 /*  NOUNIT  (input) INTEGER */
00434 /*          The FORTRAN unit number for printing out error messages */
00435 /*          (e.g., if a routine returns INFO not equal to 0.) */
00436 
00437 /*  A       (workspace) COMPLEX array, dimension (LDA, max(NN)) */
00438 /*          Used to hold the matrix whose eigenvalues are to be */
00439 /*          computed.  On exit, A contains the last matrix actually used. */
00440 
00441 /*  LDA     (input) INTEGER */
00442 /*          The leading dimension of A, and H. LDA must be at */
00443 /*          least 1 and at least max( NN ). */
00444 
00445 /*  H       (workspace) COMPLEX array, dimension (LDA, max(NN)) */
00446 /*          Another copy of the test matrix A, modified by CGEESX. */
00447 
00448 /*  HT      (workspace) COMPLEX array, dimension (LDA, max(NN)) */
00449 /*          Yet another copy of the test matrix A, modified by CGEESX. */
00450 
00451 /*  W       (workspace) COMPLEX array, dimension (max(NN)) */
00452 /*          The computed eigenvalues of A. */
00453 
00454 /*  WT      (workspace) COMPLEX array, dimension (max(NN)) */
00455 /*          Like W, this array contains the eigenvalues of A, */
00456 /*          but those computed when CGEESX only computes a partial */
00457 /*          eigendecomposition, i.e. not Schur vectors */
00458 
00459 /*  WTMP    (workspace) COMPLEX array, dimension (max(NN)) */
00460 /*          More temporary storage for eigenvalues. */
00461 
00462 /*  VS      (workspace) COMPLEX array, dimension (LDVS, max(NN)) */
00463 /*          VS holds the computed Schur vectors. */
00464 
00465 /*  LDVS    (input) INTEGER */
00466 /*          Leading dimension of VS. Must be at least max(1,max(NN)). */
00467 
00468 /*  VS1     (workspace) COMPLEX array, dimension (LDVS, max(NN)) */
00469 /*          VS1 holds another copy of the computed Schur vectors. */
00470 
00471 /*  RESULT  (output) REAL array, dimension (17) */
00472 /*          The values computed by the 17 tests described above. */
00473 /*          The values are currently limited to 1/ulp, to avoid overflow. */
00474 
00475 /*  WORK    (workspace) COMPLEX array, dimension (LWORK) */
00476 
00477 /*  LWORK   (input) INTEGER */
00478 /*          The number of entries in WORK.  This must be at least */
00479 /*          max(1,2*NN(j)**2) for all j. */
00480 
00481 /*  RWORK   (workspace) REAL array, dimension (max(NN)) */
00482 
00483 /*  BWORK   (workspace) LOGICAL array, dimension (max(NN)) */
00484 
00485 /*  INFO    (output) INTEGER */
00486 /*          If 0,  successful exit. */
00487 /*            <0,  input parameter -INFO is incorrect */
00488 /*            >0,  CLATMR, CLATMS, CLATME or CGET24 returned an error */
00489 /*                 code and INFO is its absolute value */
00490 
00491 /* ----------------------------------------------------------------------- */
00492 
00493 /*     Some Local Variables and Parameters: */
00494 /*     ---- ----- --------- --- ---------- */
00495 /*     ZERO, ONE       Real 0 and 1. */
00496 /*     MAXTYP          The number of types defined. */
00497 /*     NMAX            Largest value in NN. */
00498 /*     NERRS           The number of tests which have exceeded THRESH */
00499 /*     COND, CONDS, */
00500 /*     IMODE           Values to be passed to the matrix generators. */
00501 /*     ANORM           Norm of A; passed to matrix generators. */
00502 
00503 /*     OVFL, UNFL      Overflow and underflow thresholds. */
00504 /*     ULP, ULPINV     Finest relative precision and its inverse. */
00505 /*     RTULP, RTULPI   Square roots of the previous 4 values. */
00506 /*             The following four arrays decode JTYPE: */
00507 /*     KTYPE(j)        The general type (1-10) for type "j". */
00508 /*     KMODE(j)        The MODE value to be passed to the matrix */
00509 /*                     generator for type "j". */
00510 /*     KMAGN(j)        The order of magnitude ( O(1), */
00511 /*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
00512 /*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
00513 /*                     1/sqrt(ulp).  (0 means irrelevant.) */
00514 
00515 /*  ===================================================================== */
00516 
00517 /*     .. Parameters .. */
00518 /*     .. */
00519 /*     .. Local Scalars .. */
00520 /*     .. */
00521 /*     .. Local Arrays .. */
00522 /*     .. */
00523 /*     .. Arrays in Common .. */
00524 /*     .. */
00525 /*     .. Scalars in Common .. */
00526 /*     .. */
00527 /*     .. Common blocks .. */
00528 /*     .. */
00529 /*     .. External Functions .. */
00530 /*     .. */
00531 /*     .. External Subroutines .. */
00532 /*     .. */
00533 /*     .. Intrinsic Functions .. */
00534 /*     .. */
00535 /*     .. Data statements .. */
00536     /* Parameter adjustments */
00537     --nn;
00538     --dotype;
00539     --iseed;
00540     ht_dim1 = *lda;
00541     ht_offset = 1 + ht_dim1;
00542     ht -= ht_offset;
00543     h_dim1 = *lda;
00544     h_offset = 1 + h_dim1;
00545     h__ -= h_offset;
00546     a_dim1 = *lda;
00547     a_offset = 1 + a_dim1;
00548     a -= a_offset;
00549     --w;
00550     --wt;
00551     --wtmp;
00552     vs1_dim1 = *ldvs;
00553     vs1_offset = 1 + vs1_dim1;
00554     vs1 -= vs1_offset;
00555     vs_dim1 = *ldvs;
00556     vs_offset = 1 + vs_dim1;
00557     vs -= vs_offset;
00558     --result;
00559     --work;
00560     --rwork;
00561     --bwork;
00562 
00563     /* Function Body */
00564 /*     .. */
00565 /*     .. Executable Statements .. */
00566 
00567     s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
00568     s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2);
00569 
00570 /*     Check for errors */
00571 
00572     ntestt = 0;
00573     ntestf = 0;
00574     *info = 0;
00575 
00576 /*     Important constants */
00577 
00578     badnn = FALSE_;
00579 
00580 /*     8 is the largest dimension in the input file of precomputed */
00581 /*     problems */
00582 
00583     nmax = 8;
00584     i__1 = *nsizes;
00585     for (j = 1; j <= i__1; ++j) {
00586 /* Computing MAX */
00587         i__2 = nmax, i__3 = nn[j];
00588         nmax = max(i__2,i__3);
00589         if (nn[j] < 0) {
00590             badnn = TRUE_;
00591         }
00592 /* L10: */
00593     }
00594 
00595 /*     Check for errors */
00596 
00597     if (*nsizes < 0) {
00598         *info = -1;
00599     } else if (badnn) {
00600         *info = -2;
00601     } else if (*ntypes < 0) {
00602         *info = -3;
00603     } else if (*thresh < 0.f) {
00604         *info = -6;
00605     } else if (*niunit <= 0) {
00606         *info = -7;
00607     } else if (*nounit <= 0) {
00608         *info = -8;
00609     } else if (*lda < 1 || *lda < nmax) {
00610         *info = -10;
00611     } else if (*ldvs < 1 || *ldvs < nmax) {
00612         *info = -20;
00613     } else /* if(complicated condition) */ {
00614 /* Computing MAX */
00615 /* Computing 2nd power */
00616         i__3 = nmax;
00617         i__1 = nmax * 3, i__2 = i__3 * i__3 << 1;
00618         if (max(i__1,i__2) > *lwork) {
00619             *info = -24;
00620         }
00621     }
00622 
00623     if (*info != 0) {
00624         i__1 = -(*info);
00625         xerbla_("CDRVSX", &i__1);
00626         return 0;
00627     }
00628 
00629 /*     If nothing to do check on NIUNIT */
00630 
00631     if (*nsizes == 0 || *ntypes == 0) {
00632         goto L150;
00633     }
00634 
00635 /*     More Important constants */
00636 
00637     unfl = slamch_("Safe minimum");
00638     ovfl = 1.f / unfl;
00639     slabad_(&unfl, &ovfl);
00640     ulp = slamch_("Precision");
00641     ulpinv = 1.f / ulp;
00642     rtulp = sqrt(ulp);
00643     rtulpi = 1.f / rtulp;
00644 
00645 /*     Loop over sizes, types */
00646 
00647     nerrs = 0;
00648 
00649     i__1 = *nsizes;
00650     for (jsize = 1; jsize <= i__1; ++jsize) {
00651         n = nn[jsize];
00652         if (*nsizes != 1) {
00653             mtypes = min(21,*ntypes);
00654         } else {
00655             mtypes = min(22,*ntypes);
00656         }
00657 
00658         i__2 = mtypes;
00659         for (jtype = 1; jtype <= i__2; ++jtype) {
00660             if (! dotype[jtype]) {
00661                 goto L130;
00662             }
00663 
00664 /*           Save ISEED in case of an error. */
00665 
00666             for (j = 1; j <= 4; ++j) {
00667                 ioldsd[j - 1] = iseed[j];
00668 /* L20: */
00669             }
00670 
00671 /*           Compute "A" */
00672 
00673 /*           Control parameters: */
00674 
00675 /*           KMAGN  KCONDS  KMODE        KTYPE */
00676 /*       =1  O(1)   1       clustered 1  zero */
00677 /*       =2  large  large   clustered 2  identity */
00678 /*       =3  small          exponential  Jordan */
00679 /*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
00680 /*       =5                 random log   symmetric, w/ eigenvalues */
00681 /*       =6                 random       general, w/ eigenvalues */
00682 /*       =7                              random diagonal */
00683 /*       =8                              random symmetric */
00684 /*       =9                              random general */
00685 /*       =10                             random triangular */
00686 
00687             if (mtypes > 21) {
00688                 goto L90;
00689             }
00690 
00691             itype = ktype[jtype - 1];
00692             imode = kmode[jtype - 1];
00693 
00694 /*           Compute norm */
00695 
00696             switch (kmagn[jtype - 1]) {
00697                 case 1:  goto L30;
00698                 case 2:  goto L40;
00699                 case 3:  goto L50;
00700             }
00701 
00702 L30:
00703             anorm = 1.f;
00704             goto L60;
00705 
00706 L40:
00707             anorm = ovfl * ulp;
00708             goto L60;
00709 
00710 L50:
00711             anorm = unfl * ulpinv;
00712             goto L60;
00713 
00714 L60:
00715 
00716             claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
00717             iinfo = 0;
00718             cond = ulpinv;
00719 
00720 /*           Special Matrices -- Identity & Jordan block */
00721 
00722             if (itype == 1) {
00723 
00724 /*              Zero */
00725 
00726                 iinfo = 0;
00727 
00728             } else if (itype == 2) {
00729 
00730 /*              Identity */
00731 
00732                 i__3 = n;
00733                 for (jcol = 1; jcol <= i__3; ++jcol) {
00734                     i__4 = jcol + jcol * a_dim1;
00735                     a[i__4].r = anorm, a[i__4].i = 0.f;
00736 /* L70: */
00737                 }
00738 
00739             } else if (itype == 3) {
00740 
00741 /*              Jordan Block */
00742 
00743                 i__3 = n;
00744                 for (jcol = 1; jcol <= i__3; ++jcol) {
00745                     i__4 = jcol + jcol * a_dim1;
00746                     a[i__4].r = anorm, a[i__4].i = 0.f;
00747                     if (jcol > 1) {
00748                         i__4 = jcol + (jcol - 1) * a_dim1;
00749                         a[i__4].r = 1.f, a[i__4].i = 0.f;
00750                     }
00751 /* L80: */
00752                 }
00753 
00754             } else if (itype == 4) {
00755 
00756 /*              Diagonal Matrix, [Eigen]values Specified */
00757 
00758                 clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00759                          &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[
00760                         n + 1], &iinfo);
00761 
00762             } else if (itype == 5) {
00763 
00764 /*              Symmetric, eigenvalues specified */
00765 
00766                 clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00767                          &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
00768                          &iinfo);
00769 
00770             } else if (itype == 6) {
00771 
00772 /*              General, eigenvalues specified */
00773 
00774                 if (kconds[jtype - 1] == 1) {
00775                     conds = 1.f;
00776                 } else if (kconds[jtype - 1] == 2) {
00777                     conds = rtulpi;
00778                 } else {
00779                     conds = 0.f;
00780                 }
00781 
00782                 clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
00783                         " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
00784                         &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &
00785                         iinfo);
00786 
00787             } else if (itype == 7) {
00788 
00789 /*              Diagonal, random eigenvalues */
00790 
00791                 clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00792                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00793                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, &
00794                         c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, idumma, 
00795                          &iinfo);
00796 
00797             } else if (itype == 8) {
00798 
00799 /*              Symmetric, random eigenvalues */
00800 
00801                 clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b39, 
00802                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00803                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00804                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00805                         iinfo);
00806 
00807             } else if (itype == 9) {
00808 
00809 /*              General, random eigenvalues */
00810 
00811                 clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00812                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00813                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00814                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00815                         iinfo);
00816                 if (n >= 4) {
00817                     claset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], 
00818                             lda);
00819                     i__3 = n - 3;
00820                     claset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3]
00821 , lda);
00822                     i__3 = n - 3;
00823                     claset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * 
00824                             a_dim1 + 3], lda);
00825                     claset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], 
00826                             lda);
00827                 }
00828 
00829             } else if (itype == 10) {
00830 
00831 /*              Triangular, random eigenvalues */
00832 
00833                 clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00834                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00835                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &c__0, &
00836                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00837                         iinfo);
00838 
00839             } else {
00840 
00841                 iinfo = 1;
00842             }
00843 
00844             if (iinfo != 0) {
00845                 io___31.ciunit = *nounit;
00846                 s_wsfe(&io___31);
00847                 do_fio(&c__1, "Generator", (ftnlen)9);
00848                 do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00849                 do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00850                 do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00851                 do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
00852                 e_wsfe();
00853                 *info = abs(iinfo);
00854                 return 0;
00855             }
00856 
00857 L90:
00858 
00859 /*           Test for minimal and generous workspace */
00860 
00861             for (iwk = 1; iwk <= 2; ++iwk) {
00862                 if (iwk == 1) {
00863                     nnwork = n << 1;
00864                 } else {
00865 /* Computing MAX */
00866                     i__3 = n << 1, i__4 = n * (n + 1) / 2;
00867                     nnwork = max(i__3,i__4);
00868                 }
00869                 nnwork = max(nnwork,1);
00870 
00871                 cget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[
00872                         a_offset], lda, &h__[h_offset], &ht[ht_offset], &w[1], 
00873                          &wt[1], &wtmp[1], &vs[vs_offset], ldvs, &vs1[
00874                         vs1_offset], &rcdein, &rcdvin, &nslct, islct, &c__0, &
00875                         result[1], &work[1], &nnwork, &rwork[1], &bwork[1], 
00876                         info);
00877 
00878 /*              Check for RESULT(j) > THRESH */
00879 
00880                 ntest = 0;
00881                 nfail = 0;
00882                 for (j = 1; j <= 15; ++j) {
00883                     if (result[j] >= 0.f) {
00884                         ++ntest;
00885                     }
00886                     if (result[j] >= *thresh) {
00887                         ++nfail;
00888                     }
00889 /* L100: */
00890                 }
00891 
00892                 if (nfail > 0) {
00893                     ++ntestf;
00894                 }
00895                 if (ntestf == 1) {
00896                     io___40.ciunit = *nounit;
00897                     s_wsfe(&io___40);
00898                     do_fio(&c__1, path, (ftnlen)3);
00899                     e_wsfe();
00900                     io___41.ciunit = *nounit;
00901                     s_wsfe(&io___41);
00902                     e_wsfe();
00903                     io___42.ciunit = *nounit;
00904                     s_wsfe(&io___42);
00905                     e_wsfe();
00906                     io___43.ciunit = *nounit;
00907                     s_wsfe(&io___43);
00908                     e_wsfe();
00909                     io___44.ciunit = *nounit;
00910                     s_wsfe(&io___44);
00911                     do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
00912                     e_wsfe();
00913                     io___45.ciunit = *nounit;
00914                     s_wsfe(&io___45);
00915                     e_wsfe();
00916                     ntestf = 2;
00917                 }
00918 
00919                 for (j = 1; j <= 15; ++j) {
00920                     if (result[j] >= *thresh) {
00921                         io___46.ciunit = *nounit;
00922                         s_wsfe(&io___46);
00923                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00924                         do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
00925                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
00926                                 integer));
00927                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
00928                                 ;
00929                         do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
00930                         do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
00931                                 );
00932                         e_wsfe();
00933                     }
00934 /* L110: */
00935                 }
00936 
00937                 nerrs += nfail;
00938                 ntestt += ntest;
00939 
00940 /* L120: */
00941             }
00942 L130:
00943             ;
00944         }
00945 /* L140: */
00946     }
00947 
00948 L150:
00949 
00950 /*     Read in data from file to check accuracy of condition estimation */
00951 /*     Read input data until N=0 */
00952 
00953     jtype = 0;
00954 L160:
00955     io___47.ciunit = *niunit;
00956     i__1 = s_rsle(&io___47);
00957     if (i__1 != 0) {
00958         goto L200;
00959     }
00960     i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
00961     if (i__1 != 0) {
00962         goto L200;
00963     }
00964     i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer));
00965     if (i__1 != 0) {
00966         goto L200;
00967     }
00968     i__1 = do_lio(&c__3, &c__1, (char *)&isrt, (ftnlen)sizeof(integer));
00969     if (i__1 != 0) {
00970         goto L200;
00971     }
00972     i__1 = e_rsle();
00973     if (i__1 != 0) {
00974         goto L200;
00975     }
00976     if (n == 0) {
00977         goto L200;
00978     }
00979     ++jtype;
00980     iseed[1] = jtype;
00981     io___49.ciunit = *niunit;
00982     s_rsle(&io___49);
00983     i__1 = nslct;
00984     for (i__ = 1; i__ <= i__1; ++i__) {
00985         do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof(integer))
00986                 ;
00987     }
00988     e_rsle();
00989     i__1 = n;
00990     for (i__ = 1; i__ <= i__1; ++i__) {
00991         io___51.ciunit = *niunit;
00992         s_rsle(&io___51);
00993         i__2 = n;
00994         for (j = 1; j <= i__2; ++j) {
00995             do_lio(&c__6, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
00996                     complex));
00997         }
00998         e_rsle();
00999 /* L170: */
01000     }
01001     io___52.ciunit = *niunit;
01002     s_rsle(&io___52);
01003     do_lio(&c__4, &c__1, (char *)&rcdein, (ftnlen)sizeof(real));
01004     do_lio(&c__4, &c__1, (char *)&rcdvin, (ftnlen)sizeof(real));
01005     e_rsle();
01006 
01007     cget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda, 
01008              &h__[h_offset], &ht[ht_offset], &w[1], &wt[1], &wtmp[1], &vs[
01009             vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, &nslct, 
01010             islct, &isrt, &result[1], &work[1], lwork, &rwork[1], &bwork[1], 
01011             info);
01012 
01013 /*     Check for RESULT(j) > THRESH */
01014 
01015     ntest = 0;
01016     nfail = 0;
01017     for (j = 1; j <= 17; ++j) {
01018         if (result[j] >= 0.f) {
01019             ++ntest;
01020         }
01021         if (result[j] >= *thresh) {
01022             ++nfail;
01023         }
01024 /* L180: */
01025     }
01026 
01027     if (nfail > 0) {
01028         ++ntestf;
01029     }
01030     if (ntestf == 1) {
01031         io___53.ciunit = *nounit;
01032         s_wsfe(&io___53);
01033         do_fio(&c__1, path, (ftnlen)3);
01034         e_wsfe();
01035         io___54.ciunit = *nounit;
01036         s_wsfe(&io___54);
01037         e_wsfe();
01038         io___55.ciunit = *nounit;
01039         s_wsfe(&io___55);
01040         e_wsfe();
01041         io___56.ciunit = *nounit;
01042         s_wsfe(&io___56);
01043         e_wsfe();
01044         io___57.ciunit = *nounit;
01045         s_wsfe(&io___57);
01046         do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
01047         e_wsfe();
01048         io___58.ciunit = *nounit;
01049         s_wsfe(&io___58);
01050         e_wsfe();
01051         ntestf = 2;
01052     }
01053     for (j = 1; j <= 17; ++j) {
01054         if (result[j] >= *thresh) {
01055             io___59.ciunit = *nounit;
01056             s_wsfe(&io___59);
01057             do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
01058             do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
01059             do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
01060             do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real));
01061             e_wsfe();
01062         }
01063 /* L190: */
01064     }
01065 
01066     nerrs += nfail;
01067     ntestt += ntest;
01068     goto L160;
01069 L200:
01070 
01071 /*     Summary */
01072 
01073     slasum_(path, nounit, &nerrs, &ntestt);
01074 
01075 
01076 
01077     return 0;
01078 
01079 /*     End of CDRVSX */
01080 
01081 } /* cdrvsx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:22