slahilb.c
Go to the documentation of this file.
00001 /* slahilb.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b4 = 0.f;
00019 
00020 /* Subroutine */ int slahilb_(integer *n, integer *nrhs, real *a, integer *
00021         lda, real *x, integer *ldx, real *b, integer *ldb, real *work, 
00022         integer *info)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, x_dim1, x_offset, b_dim1, b_offset, i__1, i__2;
00026     real r__1;
00027 
00028     /* Local variables */
00029     integer i__, j, m, r__, ti, tm;
00030     extern /* Subroutine */ int xerbla_(char *, integer *), slaset_(
00031             char *, integer *, integer *, real *, real *, real *, integer *);
00032 
00033 
00034 /*  -- LAPACK auxiliary test routine (version 3.0) -- */
00035 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
00036 /*     Courant Institute, Argonne National Lab, and Rice University */
00037 /*     28 August, 2006 */
00038 
00039 /*     David Vu <dtv@cs.berkeley.edu> */
00040 /*     Yozo Hida <yozo@cs.berkeley.edu> */
00041 /*     Jason Riedy <ejr@cs.berkeley.edu> */
00042 /*     D. Halligan <dhalligan@berkeley.edu> */
00043 
00044 /*     .. Scalar Arguments .. */
00045 /*     .. Array Arguments .. */
00046 /*     .. */
00047 
00048 /*  Purpose */
00049 /*  ======= */
00050 
00051 /*  SLAHILB generates an N by N scaled Hilbert matrix in A along with */
00052 /*  NRHS right-hand sides in B and solutions in X such that A*X=B. */
00053 
00054 /*  The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all */
00055 /*  entries are integers.  The right-hand sides are the first NRHS */
00056 /*  columns of M * the identity matrix, and the solutions are the */
00057 /*  first NRHS columns of the inverse Hilbert matrix. */
00058 
00059 /*  The condition number of the Hilbert matrix grows exponentially with */
00060 /*  its size, roughly as O(e ** (3.5*N)).  Additionally, the inverse */
00061 /*  Hilbert matrices beyond a relatively small dimension cannot be */
00062 /*  generated exactly without extra precision.  Precision is exhausted */
00063 /*  when the largest entry in the inverse Hilbert matrix is greater than */
00064 /*  2 to the power of the number of bits in the fraction of the data type */
00065 /*  used plus one, which is 24 for single precision. */
00066 
00067 /*  In single, the generated solution is exact for N <= 6 and has */
00068 /*  small componentwise error for 7 <= N <= 11. */
00069 
00070 /*  Arguments */
00071 /*  ========= */
00072 
00073 /*  N       (input) INTEGER */
00074 /*          The dimension of the matrix A. */
00075 
00076 /*  NRHS    (input) NRHS */
00077 /*          The requested number of right-hand sides. */
00078 
00079 /*  A       (output) REAL array, dimension (LDA, N) */
00080 /*          The generated scaled Hilbert matrix. */
00081 
00082 /*  LDA     (input) INTEGER */
00083 /*          The leading dimension of the array A.  LDA >= N. */
00084 
00085 /*  X       (output) REAL array, dimension (LDX, NRHS) */
00086 /*          The generated exact solutions.  Currently, the first NRHS */
00087 /*          columns of the inverse Hilbert matrix. */
00088 
00089 /*  LDX     (input) INTEGER */
00090 /*          The leading dimension of the array X.  LDX >= N. */
00091 
00092 /*  B       (output) REAL array, dimension (LDB, NRHS) */
00093 /*          The generated right-hand sides.  Currently, the first NRHS */
00094 /*          columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. */
00095 
00096 /*  LDB     (input) INTEGER */
00097 /*          The leading dimension of the array B.  LDB >= N. */
00098 
00099 /*  WORK    (workspace) REAL array, dimension (N) */
00100 
00101 
00102 /*  INFO    (output) INTEGER */
00103 /*          = 0: successful exit */
00104 /*          = 1: N is too large; the data is still generated but may not */
00105 /*               be not exact. */
00106 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00107 
00108 /*  ===================================================================== */
00109 /*     .. Local Scalars .. */
00110 /*     .. Parameters .. */
00111 /*     NMAX_EXACT   the largest dimension where the generated data is */
00112 /*                  exact. */
00113 /*     NMAX_APPROX  the largest dimension where the generated data has */
00114 /*                  a small componentwise relative error. */
00115 /*     .. */
00116 /*     .. External Functions */
00117 /*     .. */
00118 /*     .. Executable Statements .. */
00119 
00120 /*     Test the input arguments */
00121 
00122     /* Parameter adjustments */
00123     --work;
00124     a_dim1 = *lda;
00125     a_offset = 1 + a_dim1;
00126     a -= a_offset;
00127     x_dim1 = *ldx;
00128     x_offset = 1 + x_dim1;
00129     x -= x_offset;
00130     b_dim1 = *ldb;
00131     b_offset = 1 + b_dim1;
00132     b -= b_offset;
00133 
00134     /* Function Body */
00135     *info = 0;
00136     if (*n < 0 || *n > 11) {
00137         *info = -1;
00138     } else if (*nrhs < 0) {
00139         *info = -2;
00140     } else if (*lda < *n) {
00141         *info = -4;
00142     } else if (*ldx < *n) {
00143         *info = -6;
00144     } else if (*ldb < *n) {
00145         *info = -8;
00146     }
00147     if (*info < 0) {
00148         i__1 = -(*info);
00149         xerbla_("SLAHILB", &i__1);
00150         return 0;
00151     }
00152     if (*n > 6) {
00153         *info = 1;
00154     }
00155 /*     Compute M = the LCM of the integers [1, 2*N-1].  The largest */
00156 /*     reasonable N is small enough that integers suffice (up to N = 11). */
00157     m = 1;
00158     i__1 = (*n << 1) - 1;
00159     for (i__ = 2; i__ <= i__1; ++i__) {
00160         tm = m;
00161         ti = i__;
00162         r__ = tm % ti;
00163         while(r__ != 0) {
00164             tm = ti;
00165             ti = r__;
00166             r__ = tm % ti;
00167         }
00168         m = m / ti * i__;
00169     }
00170 /*     Generate the scaled Hilbert matrix in A */
00171     i__1 = *n;
00172     for (j = 1; j <= i__1; ++j) {
00173         i__2 = *n;
00174         for (i__ = 1; i__ <= i__2; ++i__) {
00175             a[i__ + j * a_dim1] = (real) m / (i__ + j - 1);
00176         }
00177     }
00178 /*     Generate matrix B as simply the first NRHS columns of M * the */
00179 /*     identity. */
00180     r__1 = (real) m;
00181     slaset_("Full", n, nrhs, &c_b4, &r__1, &b[b_offset], ldb);
00182 /*     Generate the true solutions in X.  Because B = the first NRHS */
00183 /*     columns of M*I, the true solutions are just the first NRHS columns */
00184 /*     of the inverse Hilbert matrix. */
00185     work[1] = (real) (*n);
00186     i__1 = *n;
00187     for (j = 2; j <= i__1; ++j) {
00188         work[j] = work[j - 1] / (j - 1) * (j - 1 - *n) / (j - 1) * (*n + j - 
00189                 1);
00190     }
00191     i__1 = *nrhs;
00192     for (j = 1; j <= i__1; ++j) {
00193         i__2 = *n;
00194         for (i__ = 1; i__ <= i__2; ++i__) {
00195             x[i__ + j * x_dim1] = work[i__] * work[j] / (i__ + j - 1);
00196         }
00197     }
00198     return 0;
00199 } /* slahilb_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:10