multivariate_gaussian.h
Go to the documentation of this file.
00001 /*********************************************************************
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2009, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of the Willow Garage nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *********************************************************************/
00034 
00037 #ifndef STOMP_MOVEIT_MULTIVARIATE_GAUSSIAN_H_
00038 #define STOMP_MOVEIT_MULTIVARIATE_GAUSSIAN_H_
00039 
00040 #include <Eigen/Core>
00041 #include <Eigen/Cholesky>
00042 #include <boost/random/variate_generator.hpp>
00043 #include <boost/random/normal_distribution.hpp>
00044 #include <boost/random/mersenne_twister.hpp>
00045 #include <boost/shared_ptr.hpp>
00046 #include <cstdlib>
00047 
00048 namespace stomp_moveit
00049 {
00050 
00051 namespace utils
00052 {
00053 
00054 class MultivariateGaussian;
00055 typedef boost::shared_ptr<MultivariateGaussian> MultivariateGaussianPtr;
00056 
00060 class MultivariateGaussian
00061 {
00062 public:
00063   template <typename Derived1, typename Derived2>
00064   MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance);
00065 
00071   template <typename Derived>
00072   void sample(Eigen::MatrixBase<Derived>& output,bool use_covariance = true);
00073 
00074 private:
00075   Eigen::VectorXd mean_;                
00076   Eigen::MatrixXd covariance_;          
00077   Eigen::MatrixXd covariance_cholesky_; 
00079   int size_;
00080   boost::mt19937 rng_;
00081   boost::normal_distribution<> normal_dist_;
00082   boost::shared_ptr<boost::variate_generator<boost::mt19937, boost::normal_distribution<> > > gaussian_;
00083 };
00084 
00086 
00087 template <typename Derived1, typename Derived2>
00088 MultivariateGaussian::MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance):
00089   mean_(mean),
00090   covariance_(covariance),
00091   covariance_cholesky_(covariance_.llt().matrixL()),
00092   normal_dist_(0.0,1.0)
00093 {
00094 
00095   rng_.seed(rand());
00096   size_ = mean.rows();
00097   gaussian_.reset(new boost::variate_generator<boost::mt19937, boost::normal_distribution<> >(rng_, normal_dist_));
00098 }
00099 
00100 template <typename Derived>
00101 void MultivariateGaussian::sample(Eigen::MatrixBase<Derived>& output,bool use_covariance)
00102 {
00103   for (int i=0; i<size_; ++i)
00104     output(i) = (*gaussian_)();
00105 
00106   if(use_covariance)
00107   {
00108     output = mean_ + covariance_cholesky_*output;
00109   }
00110   else
00111   {
00112     output = mean_ + output;
00113   }
00114 }
00115 
00116 }
00117 
00118 }
00119 
00120 #endif /* STOMP_MOVEIT_MULTIVARIATE_GAUSSIAN_H_ */


stomp_moveit
Author(s): Jorge Nicho
autogenerated on Sat Jun 8 2019 19:24:01