SparseColEtree.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 
00011 /* 
00012  
00013  * NOTE: This file is the modified version of sp_coletree.c file in SuperLU 
00014  
00015  * -- SuperLU routine (version 3.1) --
00016  * Univ. of California Berkeley, Xerox Palo Alto Research Center,
00017  * and Lawrence Berkeley National Lab.
00018  * August 1, 2008
00019  *
00020  * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
00021  *
00022  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
00023  * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
00024  *
00025  * Permission is hereby granted to use or copy this program for any
00026  * purpose, provided the above notices are retained on all copies.
00027  * Permission to modify the code and to distribute modified code is
00028  * granted, provided the above notices are retained, and a notice that
00029  * the code was modified is included with the above copyright notice.
00030  */
00031 #ifndef SPARSE_COLETREE_H
00032 #define SPARSE_COLETREE_H
00033 
00034 namespace Eigen {
00035 
00036 namespace internal {
00037 
00039 template<typename Index, typename IndexVector>
00040 Index etree_find (Index i, IndexVector& pp)
00041 {
00042   Index p = pp(i); // Parent 
00043   Index gp = pp(p); // Grand parent 
00044   while (gp != p) 
00045   {
00046     pp(i) = gp; // Parent pointer on find path is changed to former grand parent
00047     i = gp; 
00048     p = pp(i);
00049     gp = pp(p);
00050   }
00051   return p; 
00052 }
00053 
00060 template <typename MatrixType, typename IndexVector>
00061 int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::Index *perm=0)
00062 {
00063   typedef typename MatrixType::Index Index;
00064   Index nc = mat.cols(); // Number of columns 
00065   Index m = mat.rows();
00066   Index diagSize = (std::min)(nc,m);
00067   IndexVector root(nc); // root of subtree of etree 
00068   root.setZero();
00069   IndexVector pp(nc); // disjoint sets 
00070   pp.setZero(); // Initialize disjoint sets 
00071   parent.resize(mat.cols());
00072   //Compute first nonzero column in each row 
00073   Index row,col; 
00074   firstRowElt.resize(m);
00075   firstRowElt.setConstant(nc);
00076   firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1);
00077   bool found_diag;
00078   for (col = 0; col < nc; col++)
00079   {
00080     Index pcol = col;
00081     if(perm) pcol  = perm[col];
00082     for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it)
00083     { 
00084       row = it.row();
00085       firstRowElt(row) = (std::min)(firstRowElt(row), col);
00086     }
00087   }
00088   /* Compute etree by Liu's algorithm for symmetric matrices,
00089           except use (firstRowElt[r],c) in place of an edge (r,c) of A.
00090     Thus each row clique in A'*A is replaced by a star
00091     centered at its first vertex, which has the same fill. */
00092   Index rset, cset, rroot; 
00093   for (col = 0; col < nc; col++) 
00094   {
00095     found_diag = col>=m;
00096     pp(col) = col; 
00097     cset = col; 
00098     root(cset) = col; 
00099     parent(col) = nc; 
00100     /* The diagonal element is treated here even if it does not exist in the matrix
00101      * hence the loop is executed once more */ 
00102     Index pcol = col;
00103     if(perm) pcol  = perm[col];
00104     for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it)
00105     { //  A sequence of interleaved find and union is performed 
00106       Index i = col;
00107       if(it) i = it.index();
00108       if (i == col) found_diag = true;
00109       
00110       row = firstRowElt(i);
00111       if (row >= col) continue; 
00112       rset = internal::etree_find(row, pp); // Find the name of the set containing row
00113       rroot = root(rset);
00114       if (rroot != col) 
00115       {
00116         parent(rroot) = col; 
00117         pp(cset) = rset; 
00118         cset = rset; 
00119         root(cset) = col; 
00120       }
00121     }
00122   }
00123   return 0;  
00124 }
00125 
00130 template <typename Index, typename IndexVector>
00131 void nr_etdfs (Index n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, Index postnum)
00132 {
00133   Index current = n, first, next;
00134   while (postnum != n) 
00135   {
00136     // No kid for the current node
00137     first = first_kid(current);
00138     
00139     // no kid for the current node
00140     if (first == -1) 
00141     {
00142       // Numbering this node because it has no kid 
00143       post(current) = postnum++;
00144       
00145       // looking for the next kid 
00146       next = next_kid(current); 
00147       while (next == -1) 
00148       {
00149         // No more kids : back to the parent node
00150         current = parent(current); 
00151         // numbering the parent node 
00152         post(current) = postnum++;
00153         
00154         // Get the next kid 
00155         next = next_kid(current); 
00156       }
00157       // stopping criterion 
00158       if (postnum == n+1) return; 
00159       
00160       // Updating current node 
00161       current = next; 
00162     }
00163     else 
00164     {
00165       current = first; 
00166     }
00167   }
00168 }
00169 
00170 
00177 template <typename Index, typename IndexVector>
00178 void treePostorder(Index n, IndexVector& parent, IndexVector& post)
00179 {
00180   IndexVector first_kid, next_kid; // Linked list of children 
00181   Index postnum; 
00182   // Allocate storage for working arrays and results 
00183   first_kid.resize(n+1); 
00184   next_kid.setZero(n+1);
00185   post.setZero(n+1);
00186   
00187   // Set up structure describing children
00188   Index v, dad; 
00189   first_kid.setConstant(-1); 
00190   for (v = n-1; v >= 0; v--) 
00191   {
00192     dad = parent(v);
00193     next_kid(v) = first_kid(dad); 
00194     first_kid(dad) = v; 
00195   }
00196   
00197   // Depth-first search from dummy root vertex #n
00198   postnum = 0; 
00199   internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
00200 }
00201 
00202 } // end namespace internal
00203 
00204 } // end namespace Eigen
00205 
00206 #endif // SPARSE_COLETREE_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:36:02