PacketMath.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
00006 // Heavily based on Gael's SSE version.
00007 //
00008 // This Source Code Form is subject to the terms of the Mozilla
00009 // Public License v. 2.0. If a copy of the MPL was not distributed
00010 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00011 
00012 #ifndef EIGEN_PACKET_MATH_NEON_H
00013 #define EIGEN_PACKET_MATH_NEON_H
00014 
00015 namespace Eigen {
00016 
00017 namespace internal {
00018 
00019 #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
00020 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
00021 #endif
00022 
00023 // FIXME NEON has 16 quad registers, but since the current register allocator
00024 // is so bad, it is much better to reduce it to 8
00025 #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
00026 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
00027 #endif
00028 
00029 typedef float32x4_t Packet4f;
00030 typedef int32x4_t   Packet4i;
00031 typedef uint32x4_t  Packet4ui;
00032 
00033 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
00034   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
00035 
00036 #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
00037   const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
00038 
00039 #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
00040   const Packet4i p4i_##NAME = pset1<Packet4i>(X)
00041 
00042 #if defined(__llvm__) && !defined(__clang__)
00043   //Special treatment for Apple's llvm-gcc, its NEON packet types are unions
00044   #define EIGEN_INIT_NEON_PACKET2(X, Y)       {{X, Y}}
00045   #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
00046 #else
00047   //Default initializer for packets
00048   #define EIGEN_INIT_NEON_PACKET2(X, Y)       {X, Y}
00049   #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
00050 #endif
00051 
00052 // arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
00053 // which available on LLVM and GCC (at least)
00054 #if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
00055   #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
00056 #elif defined __pld
00057   #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
00058 #elif !defined(__aarch64__)
00059   #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( "   pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
00060 #else
00061   // by default no explicit prefetching
00062   #define EIGEN_ARM_PREFETCH(ADDR)
00063 #endif
00064 
00065 template<> struct packet_traits<float>  : default_packet_traits
00066 {
00067   typedef Packet4f type;
00068   enum {
00069     Vectorizable = 1,
00070     AlignedOnScalar = 1,
00071     size = 4,
00072    
00073     HasDiv  = 1,
00074     // FIXME check the Has*
00075     HasSin  = 0,
00076     HasCos  = 0,
00077     HasLog  = 0,
00078     HasExp  = 0,
00079     HasSqrt = 0
00080   };
00081 };
00082 template<> struct packet_traits<int>    : default_packet_traits
00083 {
00084   typedef Packet4i type;
00085   enum {
00086     Vectorizable = 1,
00087     AlignedOnScalar = 1,
00088     size=4
00089     // FIXME check the Has*
00090   };
00091 };
00092 
00093 #if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
00094 // workaround gcc 4.2, 4.3 and 4.4 compilatin issue
00095 EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
00096 EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
00097 EIGEN_STRONG_INLINE void        vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
00098 EIGEN_STRONG_INLINE void        vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
00099 #endif
00100 
00101 template<> struct unpacket_traits<Packet4f> { typedef float  type; enum {size=4}; };
00102 template<> struct unpacket_traits<Packet4i> { typedef int    type; enum {size=4}; };
00103 
00104 template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return vdupq_n_f32(from); }
00105 template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from)   { return vdupq_n_s32(from); }
00106 
00107 template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
00108 {
00109   Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
00110   return vaddq_f32(pset1<Packet4f>(a), countdown);
00111 }
00112 template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
00113 {
00114   Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
00115   return vaddq_s32(pset1<Packet4i>(a), countdown);
00116 }
00117 
00118 template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
00119 template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
00120 
00121 template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
00122 template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
00123 
00124 template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
00125 template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
00126 
00127 template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
00128 template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
00129 
00130 template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
00131 template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
00132 
00133 template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
00134 {
00135   Packet4f inv, restep, div;
00136 
00137   // NEON does not offer a divide instruction, we have to do a reciprocal approximation
00138   // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
00139   // a reciprocal estimate AND a reciprocal step -which saves a few instructions
00140   // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
00141   // Newton-Raphson and vrecpsq_f32()
00142   inv = vrecpeq_f32(b);
00143 
00144   // This returns a differential, by which we will have to multiply inv to get a better
00145   // approximation of 1/b.
00146   restep = vrecpsq_f32(b, inv);
00147   inv = vmulq_f32(restep, inv);
00148 
00149   // Finally, multiply a by 1/b and get the wanted result of the division.
00150   div = vmulq_f32(a, inv);
00151 
00152   return div;
00153 }
00154 template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
00155 { eigen_assert(false && "packet integer division are not supported by NEON");
00156   return pset1<Packet4i>(0);
00157 }
00158 
00159 // for some weird raisons, it has to be overloaded for packet of integers
00160 template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
00161 template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
00162 
00163 template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
00164 template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
00165 
00166 template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
00167 template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
00168 
00169 // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
00170 template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
00171 {
00172   return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
00173 }
00174 template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
00175 
00176 template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
00177 {
00178   return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
00179 }
00180 template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
00181 
00182 template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
00183 {
00184   return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
00185 }
00186 template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
00187 
00188 template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
00189 {
00190   return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
00191 }
00192 template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
00193 
00194 template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
00195 template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int*   from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
00196 
00197 template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
00198 template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)   { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
00199 
00200 template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float*   from)
00201 {
00202   float32x2_t lo, hi;
00203   lo = vld1_dup_f32(from);
00204   hi = vld1_dup_f32(from+1);
00205   return vcombine_f32(lo, hi);
00206 }
00207 template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int*     from)
00208 {
00209   int32x2_t lo, hi;
00210   lo = vld1_dup_s32(from);
00211   hi = vld1_dup_s32(from+1);
00212   return vcombine_s32(lo, hi);
00213 }
00214 
00215 template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
00216 template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
00217 
00218 template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*  to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
00219 template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*      to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
00220 
00221 template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ARM_PREFETCH(addr); }
00222 template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*     addr) { EIGEN_ARM_PREFETCH(addr); }
00223 
00224 // FIXME only store the 2 first elements ?
00225 template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
00226 template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int   EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
00227 
00228 template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
00229   float32x2_t a_lo, a_hi;
00230   Packet4f a_r64;
00231 
00232   a_r64 = vrev64q_f32(a);
00233   a_lo = vget_low_f32(a_r64);
00234   a_hi = vget_high_f32(a_r64);
00235   return vcombine_f32(a_hi, a_lo);
00236 }
00237 template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
00238   int32x2_t a_lo, a_hi;
00239   Packet4i a_r64;
00240 
00241   a_r64 = vrev64q_s32(a);
00242   a_lo = vget_low_s32(a_r64);
00243   a_hi = vget_high_s32(a_r64);
00244   return vcombine_s32(a_hi, a_lo);
00245 }
00246 template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
00247 template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
00248 
00249 template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
00250 {
00251   float32x2_t a_lo, a_hi, sum;
00252 
00253   a_lo = vget_low_f32(a);
00254   a_hi = vget_high_f32(a);
00255   sum = vpadd_f32(a_lo, a_hi);
00256   sum = vpadd_f32(sum, sum);
00257   return vget_lane_f32(sum, 0);
00258 }
00259 
00260 template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
00261 {
00262   float32x4x2_t vtrn1, vtrn2, res1, res2;
00263   Packet4f sum1, sum2, sum;
00264 
00265   // NEON zip performs interleaving of the supplied vectors.
00266   // We perform two interleaves in a row to acquire the transposed vector
00267   vtrn1 = vzipq_f32(vecs[0], vecs[2]);
00268   vtrn2 = vzipq_f32(vecs[1], vecs[3]);
00269   res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
00270   res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
00271 
00272   // Do the addition of the resulting vectors
00273   sum1 = vaddq_f32(res1.val[0], res1.val[1]);
00274   sum2 = vaddq_f32(res2.val[0], res2.val[1]);
00275   sum = vaddq_f32(sum1, sum2);
00276 
00277   return sum;
00278 }
00279 
00280 template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
00281 {
00282   int32x2_t a_lo, a_hi, sum;
00283 
00284   a_lo = vget_low_s32(a);
00285   a_hi = vget_high_s32(a);
00286   sum = vpadd_s32(a_lo, a_hi);
00287   sum = vpadd_s32(sum, sum);
00288   return vget_lane_s32(sum, 0);
00289 }
00290 
00291 template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
00292 {
00293   int32x4x2_t vtrn1, vtrn2, res1, res2;
00294   Packet4i sum1, sum2, sum;
00295 
00296   // NEON zip performs interleaving of the supplied vectors.
00297   // We perform two interleaves in a row to acquire the transposed vector
00298   vtrn1 = vzipq_s32(vecs[0], vecs[2]);
00299   vtrn2 = vzipq_s32(vecs[1], vecs[3]);
00300   res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
00301   res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
00302 
00303   // Do the addition of the resulting vectors
00304   sum1 = vaddq_s32(res1.val[0], res1.val[1]);
00305   sum2 = vaddq_s32(res2.val[0], res2.val[1]);
00306   sum = vaddq_s32(sum1, sum2);
00307 
00308   return sum;
00309 }
00310 
00311 // Other reduction functions:
00312 // mul
00313 template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
00314 {
00315   float32x2_t a_lo, a_hi, prod;
00316 
00317   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
00318   a_lo = vget_low_f32(a);
00319   a_hi = vget_high_f32(a);
00320   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
00321   prod = vmul_f32(a_lo, a_hi);
00322   // Multiply prod with its swapped value |a2*a4|a1*a3|
00323   prod = vmul_f32(prod, vrev64_f32(prod));
00324 
00325   return vget_lane_f32(prod, 0);
00326 }
00327 template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
00328 {
00329   int32x2_t a_lo, a_hi, prod;
00330 
00331   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
00332   a_lo = vget_low_s32(a);
00333   a_hi = vget_high_s32(a);
00334   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
00335   prod = vmul_s32(a_lo, a_hi);
00336   // Multiply prod with its swapped value |a2*a4|a1*a3|
00337   prod = vmul_s32(prod, vrev64_s32(prod));
00338 
00339   return vget_lane_s32(prod, 0);
00340 }
00341 
00342 // min
00343 template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
00344 {
00345   float32x2_t a_lo, a_hi, min;
00346 
00347   a_lo = vget_low_f32(a);
00348   a_hi = vget_high_f32(a);
00349   min = vpmin_f32(a_lo, a_hi);
00350   min = vpmin_f32(min, min);
00351 
00352   return vget_lane_f32(min, 0);
00353 }
00354 
00355 template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
00356 {
00357   int32x2_t a_lo, a_hi, min;
00358 
00359   a_lo = vget_low_s32(a);
00360   a_hi = vget_high_s32(a);
00361   min = vpmin_s32(a_lo, a_hi);
00362   min = vpmin_s32(min, min);
00363   
00364   return vget_lane_s32(min, 0);
00365 }
00366 
00367 // max
00368 template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
00369 {
00370   float32x2_t a_lo, a_hi, max;
00371 
00372   a_lo = vget_low_f32(a);
00373   a_hi = vget_high_f32(a);
00374   max = vpmax_f32(a_lo, a_hi);
00375   max = vpmax_f32(max, max);
00376 
00377   return vget_lane_f32(max, 0);
00378 }
00379 
00380 template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
00381 {
00382   int32x2_t a_lo, a_hi, max;
00383 
00384   a_lo = vget_low_s32(a);
00385   a_hi = vget_high_s32(a);
00386   max = vpmax_s32(a_lo, a_hi);
00387 
00388   return vget_lane_s32(max, 0);
00389 }
00390 
00391 // this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
00392 // see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
00393 #define PALIGN_NEON(Offset,Type,Command) \
00394 template<>\
00395 struct palign_impl<Offset,Type>\
00396 {\
00397     EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
00398     {\
00399         if (Offset!=0)\
00400             first = Command(first, second, Offset);\
00401     }\
00402 };\
00403 
00404 PALIGN_NEON(0,Packet4f,vextq_f32)
00405 PALIGN_NEON(1,Packet4f,vextq_f32)
00406 PALIGN_NEON(2,Packet4f,vextq_f32)
00407 PALIGN_NEON(3,Packet4f,vextq_f32)
00408 PALIGN_NEON(0,Packet4i,vextq_s32)
00409 PALIGN_NEON(1,Packet4i,vextq_s32)
00410 PALIGN_NEON(2,Packet4i,vextq_s32)
00411 PALIGN_NEON(3,Packet4i,vextq_s32)
00412     
00413 #undef PALIGN_NEON
00414 
00415 } // end namespace internal
00416 
00417 } // end namespace Eigen
00418 
00419 #endif // EIGEN_PACKET_MATH_NEON_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:33:35